These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 1587804)

  • 1. Characterization of carbohydrate-binding specificity of concanavalin A by competitive binding of pyridylamino sugar chains.
    Mega T; Oku H; Hase S
    J Biochem; 1992 Mar; 111(3):396-400. PubMed ID: 1587804
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conversion of pyridylamino sugar chains to corresponding reducing sugar chains.
    Takahashi C; Nakakita S; Hase S
    J Biochem; 2003 Jul; 134(1):51-5. PubMed ID: 12944370
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimation of elution times on reverse-phase high-performance liquid chromatography of pyridylamino derivatives of sugar chains from glycoproteins.
    Hase S; Ikenaka T
    Anal Biochem; 1990 Jan; 184(1):135-8. PubMed ID: 2321750
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of lectin-sugar binding constants by microequilibrium dialysis coupled with high performance liquid chromatography.
    Mega T; Hase S
    J Biochem; 1991 Apr; 109(4):600-3. PubMed ID: 1869513
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural analysis of the sugar chains of human urinary thrombomodulin.
    Wakabayashi H; Natsuka S; Honda M; Naotsuka M; Ito Y; Kajihara J; Hase S
    J Biochem; 2001 Oct; 130(4):543-52. PubMed ID: 11574074
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Separation of oligomannose-type sugar chains having one to five mannose residues by high-performance liquid chromatography as their pyridylamino derivatives.
    Oku H; Hase S; Ikenaka T
    Anal Biochem; 1990 Mar; 185(2):331-4. PubMed ID: 2339788
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Introduction of a new scale into reversed-phase high-performance liquid chromatography of pyridylamino sugar chains for structural assignment.
    Yanagida K; Ogawa H; Omichi K; Hase S
    J Chromatogr A; 1998 Mar; 800(2):187-98. PubMed ID: 9561762
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of pyridylaminated O-linked sugar chains by two-dimensional sugar mapping.
    Kuraya N; Hase S
    Anal Biochem; 1996 Jan; 233(2):205-11. PubMed ID: 8789719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conversion of pyridylamino sugar chains to 1-amino-1-deoxy derivatives, intermediates for tagging with fluorescein and biotin.
    Hase S
    J Biochem; 1992 Aug; 112(2):266-8. PubMed ID: 1400268
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structures of sugar chains of ricin D.
    Kimura Y; Hase S; Kobayashi Y; Kyogoku Y; Ikenaka T; Funatsu G
    J Biochem; 1988 Jun; 103(6):944-9. PubMed ID: 3170523
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structures of N-linked sugar chains expressed mainly in mouse brain.
    Shimizu H; Ochiai K; Ikenaka K; Mikoshiba K; Hase S
    J Biochem; 1993 Sep; 114(3):334-8. PubMed ID: 8282722
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Release of O-linked sugar chains from glycoproteins with anhydrous hydrazine and pyridylamination of the sugar chains with improved reaction conditions.
    Kuraya N; Hase S
    J Biochem; 1992 Jul; 112(1):122-6. PubMed ID: 1429500
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structures of sugar chains of a p-nitrophenyl acetate-hydrolyzing esterase from the microsomes of rat liver.
    Natsuka S; Himeno M; Hase S; Ito H; Ueda T; Kato K; Ikenaka T
    J Biochem; 1988 Jun; 103(6):986-91. PubMed ID: 3170525
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differences in the binding affinities of dimeric concanavalin A (including acetyl and succinyl derivatives) and tetrameric concanavalin A with large oligomannose-type glycopeptides.
    Mandal DK; Brewer CF
    Biochemistry; 1993 May; 32(19):5116-20. PubMed ID: 8494887
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analytical method for sugar chain structures involving lectins and membrane ultrafiltration.
    Katoh H; Satomura S; Matsuura S
    J Biochem; 1993 Jan; 113(1):118-22. PubMed ID: 7681055
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification method for twelve oligomannose-type sugar chains thought to be processing intermediates of glycoproteins.
    Hase S; Natsuka S; Oku H; Ikenaka T
    Anal Biochem; 1987 Dec; 167(2):321-6. PubMed ID: 3442327
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural analysis of N-linked carbohydrate chains of funnel web spider (Agelenopsis aperta) venom peptide isomerase.
    Shikata Y; Ohe H; Mano N; Kuwada M; Asakawa N
    Biosci Biotechnol Biochem; 1998 Jun; 62(6):1211-5. PubMed ID: 9692206
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural analyses of sugar chains from ricin A-chain variant.
    Kimura Y; Kusuoku H; Tada M; Takagi S; Funatsu G
    Agric Biol Chem; 1990 Jan; 54(1):157-62. PubMed ID: 1368517
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Use of pyridylamino derivatives of sugar chains for substrate specificity of cytosolic alpha-mannosidase].
    Hase S
    Tanpakushitsu Kakusan Koso; 1992 Aug; 37(11 Suppl):2054-9. PubMed ID: 1410502
    [No Abstract]   [Full Text] [Related]  

  • 20. Analysis of oligosaccharide structures from the reducing end terminal by combining partial acid hydrolysis and a two-dimensional sugar map.
    Makino Y; Omichi K; Hase S
    Anal Biochem; 1998 Nov; 264(2):172-9. PubMed ID: 9866679
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.