BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

382 related articles for article (PubMed ID: 15878198)

  • 21. Potential of hydrogels based on poly(ethylene glycol) and sebacic acid as orthopedic tissue engineering scaffolds.
    Kim J; Hefferan TE; Yaszemski MJ; Lu L
    Tissue Eng Part A; 2009 Aug; 15(8):2299-307. PubMed ID: 19292677
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A bio-inspired, microchanneled hydrogel with controlled spacing of cell adhesion ligands regulates 3D spatial organization of cells and tissue.
    Lee MK; Rich MH; Lee J; Kong H
    Biomaterials; 2015 Jul; 58():26-34. PubMed ID: 25941779
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fabrication of multi-biofunctional gelatin-based electrospun fibrous scaffolds for enhancement of osteogenesis of mesenchymal stem cells.
    Lin WH; Yu J; Chen G; Tsai WB
    Colloids Surf B Biointerfaces; 2016 Feb; 138():26-31. PubMed ID: 26642073
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Injectable collagen/RGD systems for bone tissue engineering applications.
    Kung FC
    Biomed Mater Eng; 2018; 29(2):241-251. PubMed ID: 29457597
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In vitro osteogenic differentiation of marrow stromal cells encapsulated in biodegradable hydrogels.
    Temenoff JS; Park H; Jabbari E; Sheffield TL; LeBaron RG; Ambrose CG; Mikos AG
    J Biomed Mater Res A; 2004 Aug; 70(2):235-44. PubMed ID: 15227668
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Thermally cross-linked oligo(poly(ethylene glycol) fumarate) hydrogels support osteogenic differentiation of encapsulated marrow stromal cells in vitro.
    Temenoff JS; Park H; Jabbari E; Conway DE; Sheffield TL; Ambrose CG; Mikos AG
    Biomacromolecules; 2004; 5(1):5-10. PubMed ID: 14715001
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Effects of the surface of PLGA-(ASP-PEG) modified with RGD and K16-containing peptide on the adhesion and differentiation of bone marrow stromal cells].
    Song Y; Huang H; Zheng Q; Liao Q
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2009 Dec; 26(6):1281-5, 1290. PubMed ID: 20095487
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In vitro and in vivo evaluation of differentially demineralized cancellous bone scaffolds combined with human bone marrow stromal cells for tissue engineering.
    Mauney JR; Jaquiéry C; Volloch V; Heberer M; Martin I; Kaplan DL
    Biomaterials; 2005 Jun; 26(16):3173-85. PubMed ID: 15603812
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fabrication of positively charged poly(ethylene glycol)-diacrylate hydrogel as a bone tissue engineering scaffold.
    Tan F; Xu X; Deng T; Yin M; Zhang X; Wang J
    Biomed Mater; 2012 Oct; 7(5):055009. PubMed ID: 22945346
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An ectopic study of tissue-engineered bone with Nell-1 gene modified rat bone marrow stromal cells in nude mice.
    Hu JZ; Zhang ZY; Zhao J; Zhang XL; Liu GT; Jiang XQ
    Chin Med J (Engl); 2009 Apr; 122(8):972-9. PubMed ID: 19493425
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Osteogenic differentiation of bone marrow stromal cells induced by coculture with chondrocytes encapsulated in three-dimensional matrices.
    Thompson AD; Betz MW; Yoon DM; Fisher JP
    Tissue Eng Part A; 2009 May; 15(5):1181-90. PubMed ID: 18855520
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biodegradation, soft and hard tissue integration of various polyethylene glycol hydrogels: a histomorphometric study in rabbits.
    Thoma DS; Subramani K; Weber FE; Luder HU; Hämmerle CH; Jung RE
    Clin Oral Implants Res; 2011 Nov; 22(11):1247-54. PubMed ID: 21518006
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cyclic acetal hydroxyapatite composites and endogenous osteogenic gene expression of rat marrow stromal cells.
    Patel M; Dunn TA; Tostanoski S; Fisher JP
    J Tissue Eng Regen Med; 2010 Aug; 4(6):422-36. PubMed ID: 20047194
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Survival, proliferation and differentiation enhancement of neural stem cells cultured in three-dimensional polyethylene glycol-RGD hydrogel with tenascin.
    Naghdi P; Tiraihi T; Ganji F; Darabi S; Taheri T; Kazemi H
    J Tissue Eng Regen Med; 2016 Mar; 10(3):199-208. PubMed ID: 25312025
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fabrication of polycaprolactone collagen hydrogel constructs seeded with mesenchymal stem cells for bone regeneration.
    Reichert JC; Heymer A; Berner A; Eulert J; Nöth U
    Biomed Mater; 2009 Dec; 4(6):065001. PubMed ID: 19837997
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cellular responses to degradable cyclic acetal modified PEG hydrogels.
    Kaihara S; Matsumura S; Fisher JP
    J Biomed Mater Res A; 2009 Sep; 90(3):863-73. PubMed ID: 18615467
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Alginate hydrogels containing cell-interactive beads for bone formation.
    Bhat A; Hoch AI; Decaris ML; Leach JK
    FASEB J; 2013 Dec; 27(12):4844-52. PubMed ID: 24005905
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Heterotopic osteogenesis of autogenous marrow stromal cells on ceramic bovine bone/ hydrogel scaffold].
    He D; Jin Y; Luo K; Li S
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2006 Feb; 20(2):116-20. PubMed ID: 16529318
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of hydrogel porosity on marrow stromal cell phenotypic expression.
    Dadsetan M; Hefferan TE; Szatkowski JP; Mishra PK; Macura SI; Lu L; Yaszemski MJ
    Biomaterials; 2008 May; 29(14):2193-202. PubMed ID: 18262642
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In vivo evaluation of MMP sensitive high-molecular weight HA-based hydrogels for bone tissue engineering.
    Kim J; Kim IS; Cho TH; Kim HC; Yoon SJ; Choi J; Park Y; Sun K; Hwang SJ
    J Biomed Mater Res A; 2010 Dec; 95(3):673-81. PubMed ID: 20725983
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.