BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 15878267)

  • 21. Active site specificity profiling of the matrix metalloproteinase family: Proteomic identification of 4300 cleavage sites by nine MMPs explored with structural and synthetic peptide cleavage analyses.
    Eckhard U; Huesgen PF; Schilling O; Bellac CL; Butler GS; Cox JH; Dufour A; Goebeler V; Kappelhoff R; Keller UAD; Klein T; Lange PF; Marino G; Morrison CJ; Prudova A; Rodriguez D; Starr AE; Wang Y; Overall CM
    Matrix Biol; 2016 Jan; 49():37-60. PubMed ID: 26407638
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Defining the extended substrate specificity of kallikrein 1-related peptidases.
    Borgoño CA; Gavigan JA; Alves J; Bowles B; Harris JL; Sotiropoulou G; Diamandis EP
    Biol Chem; 2007 Nov; 388(11):1215-25. PubMed ID: 17976015
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Positional scanning substrate combinatorial library (PS-SCL) approach to define caspase substrate specificity.
    Poręba M; Szalek A; Kasperkiewicz P; Drąg M
    Methods Mol Biol; 2014; 1133():41-59. PubMed ID: 24567093
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Scanning the prime-site substrate specificity of proteolytic enzymes: a novel assay based on ligand-enhanced lanthanide ion fluorescence.
    Barrios AM; Craik CS
    Bioorg Med Chem Lett; 2002 Dec; 12(24):3619-23. PubMed ID: 12443789
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Probing the substrate specificities of matriptase, matriptase-2, hepsin and DESC1 with internally quenched fluorescent peptides.
    Béliveau F; Désilets A; Leduc R
    FEBS J; 2009 Apr; 276(8):2213-26. PubMed ID: 19302215
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development of sensitive cathepsin G fluorogenic substrate using combinatorial chemistry methods.
    Lesner A; Wysocka M; Guzow K; Wiczk W; Legowska A; Rolka K
    Anal Biochem; 2008 Apr; 375(2):306-12. PubMed ID: 18261971
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The extended substrate specificity of the human mast cell chymase reveals a serine protease with well-defined substrate recognition profile.
    Andersson MK; Enoksson M; Gallwitz M; Hellman L
    Int Immunol; 2009 Jan; 21(1):95-104. PubMed ID: 19073880
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Serpin1 of Arabidopsis thaliana is a suicide inhibitor for metacaspase 9.
    Vercammen D; Belenghi B; van de Cotte B; Beunens T; Gavigan JA; De Rycke R; Brackenier A; Inzé D; Harris JL; Van Breusegem F
    J Mol Biol; 2006 Dec; 364(4):625-36. PubMed ID: 17028019
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Peptide microarrays for the determination of protease substrate specificity.
    Salisbury CM; Maly DJ; Ellman JA
    J Am Chem Soc; 2002 Dec; 124(50):14868-70. PubMed ID: 12475327
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Expression and characterization of constitutively active human caspase-14.
    Park K; Kuechle MK; Choe Y; Craik CS; Lawrence OT; Presland RB
    Biochem Biophys Res Commun; 2006 Sep; 347(4):941-8. PubMed ID: 16854378
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Extended cleavage specificity of mMCP-1, the major mucosal mast cell protease in mouse-high specificity indicates high substrate selectivity.
    Andersson MK; Pemberton AD; Miller HR; Hellman L
    Mol Immunol; 2008 May; 45(9):2548-58. PubMed ID: 18313755
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High throughput substrate specificity profiling of serine and cysteine proteases using solution-phase fluorogenic peptide microarrays.
    Gosalia DN; Salisbury CM; Ellman JA; Diamond SL
    Mol Cell Proteomics; 2005 May; 4(5):626-36. PubMed ID: 15705970
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A substrate combinatorial array for caspases.
    Lee D; Adams JL; Brandt M; DeWolf WE; Keller PM; Levy MA
    Bioorg Med Chem Lett; 1999 Jun; 9(12):1667-72. PubMed ID: 10397497
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structural and kinetic analysis of caspase-3 reveals role for s5 binding site in substrate recognition.
    Fang B; Boross PI; Tozser J; Weber IT
    J Mol Biol; 2006 Jul; 360(3):654-66. PubMed ID: 16781734
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Substrate profiling of deubiquitin hydrolases with a positional scanning library and mass spectrometry.
    Mason DE; Ek J; Peters EC; Harris JL
    Biochemistry; 2004 Jun; 43(21):6535-44. PubMed ID: 15157086
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification of protease substrates by combinatorial profiling on TentaGel beads.
    Kofoed J; Reymond JL
    Chem Commun (Camb); 2007 Nov; (43):4453-5. PubMed ID: 17971953
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Activity profiling of human deSUMOylating enzymes (SENPs) with synthetic substrates suggests an unexpected specificity of two newly characterized members of the family.
    Drag M; Mikolajczyk J; Krishnakumar IM; Huang Z; Salvesen GS
    Biochem J; 2008 Jan; 409(2):461-9. PubMed ID: 17916063
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The effects of exosite occupancy on the substrate specificity of thrombin.
    Ng NM; Quinsey NS; Matthews AY; Kaiserman D; Wijeyewickrema LC; Bird PI; Thompson PE; Pike RN
    Arch Biochem Biophys; 2009 Sep; 489(1-2):48-54. PubMed ID: 19638274
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Positional scanning synthetic combinatorial libraries for substrate profiling.
    Schneider EL; Craik CS
    Methods Mol Biol; 2009; 539():59-78. PubMed ID: 19377970
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Profiling serine protease substrate specificity with solution phase fluorogenic peptide microarrays.
    Gosalia DN; Salisbury CM; Maly DJ; Ellman JA; Diamond SL
    Proteomics; 2005 Apr; 5(5):1292-8. PubMed ID: 15742319
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.