These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 15878553)

  • 1. Prediction of siRNA functionality using generalized string kernel and support vector machine.
    Teramoto R; Aoki M; Kimura T; Kanaoka M
    FEBS Lett; 2005 May; 579(13):2878-82. PubMed ID: 15878553
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RFRCDB-siRNA: improved design of siRNAs by random forest regression model coupled with database searching.
    Jiang P; Wu H; Da Y; Sang F; Wei J; Sun X; Lu Z
    Comput Methods Programs Biomed; 2007 Sep; 87(3):230-8. PubMed ID: 17644215
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effective inhibition of hepatitis B virus replication by small interfering RNAs expressed from human foamy virus vectors.
    Sun Y; Li Z; Li L; Li J; Liu X; Li W
    Int J Mol Med; 2007 Apr; 19(4):705-11. PubMed ID: 17334648
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of siRNA knockdown efficiency using artificial neural network models.
    Ge G; Wong GW; Luo B
    Biochem Biophys Res Commun; 2005 Oct; 336(2):723-8. PubMed ID: 16153609
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selecting effective siRNA target sequences by using Bayes' theorem.
    Takasaki S
    Comput Biol Chem; 2009 Oct; 33(5):368-72. PubMed ID: 19682951
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A protocol for designing siRNAs with high functionality and specificity.
    Birmingham A; Anderson E; Sullivan K; Reynolds A; Boese Q; Leake D; Karpilow J; Khvorova A
    Nat Protoc; 2007; 2(9):2068-78. PubMed ID: 17853862
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermodynamic instability of siRNA duplex is a prerequisite for dependable prediction of siRNA activities.
    Ichihara M; Murakumo Y; Masuda A; Matsuura T; Asai N; Jijiwa M; Ishida M; Shinmi J; Yatsuya H; Qiao S; Takahashi M; Ohno K
    Nucleic Acids Res; 2007; 35(18):e123. PubMed ID: 17884914
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selecting effective siRNA sequences based on the self-organizing map and statistical techniques.
    Takasaki S; Kawamura Y; Konagaya A
    Comput Biol Chem; 2006 Jun; 30(3):169-78. PubMed ID: 16600687
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selection and validation of optimal siRNA target sites for RNAi-mediated gene silencing.
    Luo Q; Kang Q; Song WX; Luu HH; Luo X; An N; Luo J; Deng ZL; Jiang W; Yin H; Chen J; Sharff KA; Tang N; Bennett E; Haydon RC; He TC
    Gene; 2007 Jun; 395(1-2):160-9. PubMed ID: 17449199
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcriptional targeting of small interfering RNAs into cancer cells.
    Huynh T; Wälchli S; Sioud M
    Biochem Biophys Res Commun; 2006 Dec; 350(4):854-9. PubMed ID: 17034763
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparison of siRNA efficacy predictors.
    Saetrom P; Snøve O
    Biochem Biophys Res Commun; 2004 Aug; 321(1):247-53. PubMed ID: 15358242
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effective gene suppression using small interfering RNA in hard-to-transfect human T cells.
    Yin J; Ma Z; Selliah N; Shivers DK; Cron RQ; Finkel TH
    J Immunol Methods; 2006 May; 312(1-2):1-11. PubMed ID: 16603179
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of herpes simplex virus type 1-based amplicon vector for delivery of small interfering RNA.
    Sabbioni S; Callegari E; Manservigi M; Argnani R; Corallini A; Negrini M; Manservigi R
    Gene Ther; 2007 Mar; 14(5):459-64. PubMed ID: 17051250
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A structure-activity relationship study of siRNAs with structural variations.
    Chang CI; Hong SW; Kim S; Lee DK
    Biochem Biophys Res Commun; 2007 Aug; 359(4):997-1003. PubMed ID: 17577577
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the delivery of small interfering RNAs into mammalian cells.
    Sioud M
    Expert Opin Drug Deliv; 2005 Jul; 2(4):639-51. PubMed ID: 16296791
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The impact of target site accessibility on the design of effective siRNAs.
    Tafer H; Ameres SL; Obernosterer G; Gebeshuber CA; Schroeder R; Martinez J; Hofacker IL
    Nat Biotechnol; 2008 May; 26(5):578-83. PubMed ID: 18438400
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient prediction methods for selecting effective siRNA sequences.
    Takasaki S
    Comput Biol Med; 2010 Feb; 40(2):149-58. PubMed ID: 20022002
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activity of stabilized short interfering RNA in a mouse model of hepatitis B virus replication.
    Morrissey DV; Blanchard K; Shaw L; Jensen K; Lockridge JA; Dickinson B; McSwiggen JA; Vargeese C; Bowman K; Shaffer CS; Polisky BA; Zinnen S
    Hepatology; 2005 Jun; 41(6):1349-56. PubMed ID: 15880588
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Competition potency of siRNA is specified by the 5'-half sequence of the guide strand.
    Yoo JW; Kim S; Lee DK
    Biochem Biophys Res Commun; 2008 Feb; 367(1):78-83. PubMed ID: 18164261
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potent and specific inhibition of retrovirus production by coexpression of multiple siRNAs directed against different regions of viral genomes.
    Ye K; Jin S
    Biotechnol Prog; 2006; 22(1):45-52. PubMed ID: 16454491
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.