BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 15878832)

  • 1. Predictive Bayesian neural network models of MHC class II peptide binding.
    Burden FR; Winkler DA
    J Mol Graph Model; 2005 Jun; 23(6):481-9. PubMed ID: 15878832
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonlinear predictive modeling of MHC class II-peptide binding using Bayesian neural networks.
    Winkler DA; Burden FR
    Methods Mol Biol; 2007; 409():365-77. PubMed ID: 18450015
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Bayesian regression approach to the prediction of MHC-II binding affinity.
    Zhang W; Liu J; Niu YQ; Wang L; Hu X
    Comput Methods Programs Biomed; 2008 Oct; 92(1):1-7. PubMed ID: 18562039
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure-based identification of MHC binding peptides: Benchmarking of prediction accuracy.
    Kumar N; Mohanty D
    Mol Biosyst; 2010 Dec; 6(12):2508-20. PubMed ID: 20953500
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A motif detection and classification method for peptide sequences using genetic programming.
    Tomita Y; Kato R; Okochi M; Honda H
    J Biosci Bioeng; 2008 Aug; 106(2):154-61. PubMed ID: 18804058
    [TBL] [Abstract][Full Text] [Related]  

  • 6. QSAR method for prediction of protein-peptide binding affinity: application to MHC class I molecule HLA-A*0201.
    Zhao C; Zhang H; Luan F; Zhang R; Liu M; Hu Z; Fan B
    J Mol Graph Model; 2007 Jul; 26(1):246-54. PubMed ID: 17275373
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side-chains.
    Parker KC; Bednarek MA; Coligan JE
    J Immunol; 1994 Jan; 152(1):163-75. PubMed ID: 8254189
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative structure-activity relationship of peptides binding to the class II major histocompatibility complex molecule Aq associated with autoimmune arthritis.
    Holm L; Frech K; Dzhambazov B; Holmdahl R; Kihlberg J; Linusson A
    J Med Chem; 2007 May; 50(9):2049-59. PubMed ID: 17425295
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of an artificial neural network to predict specific class I MHC binding peptide sequences.
    Milik M; Sauer D; Brunmark AP; Yuan L; Vitiello A; Jackson MR; Peterson PA; Skolnick J; Glass CA
    Nat Biotechnol; 1998 Aug; 16(8):753-6. PubMed ID: 9702774
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ensembles of Bayesian-regularized genetic neural networks for modeling of acetylcholinesterase inhibition by huprines.
    Fernández M; Caballero J
    Chem Biol Drug Des; 2006 Oct; 68(4):201-12. PubMed ID: 17105484
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toward prediction of class II mouse major histocompatibility complex peptide binding affinity: in silico bioinformatic evaluation using partial least squares, a robust multivariate statistical technique.
    Hattotuwagama CK; Toseland CP; Guan P; Taylor DJ; Hemsley SL; Doytchinova IA; Flower DR
    J Chem Inf Model; 2006; 46(3):1491-502. PubMed ID: 16711768
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ab initio prediction of peptide-MHC binding geometry for diverse class I MHC allotypes.
    Bordner AJ; Abagyan R
    Proteins; 2006 May; 63(3):512-26. PubMed ID: 16470819
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two complementary methods for predicting peptides binding major histocompatibility complex molecules.
    Gulukota K; Sidney J; Sette A; DeLisi C
    J Mol Biol; 1997 Apr; 267(5):1258-67. PubMed ID: 9150410
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Peptide length-based prediction of peptide-MHC class II binding.
    Chang ST; Ghosh D; Kirschner DE; Linderman JJ
    Bioinformatics; 2006 Nov; 22(22):2761-7. PubMed ID: 17000752
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure-based design and evaluation of MHC class II binding peptides.
    de Haan EC; Wauben MH; Grosfeld-Stulemeyer MC; Moret EE
    Biologicals; 2001; 29(3-4):289-92. PubMed ID: 11851330
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selecting informative data for developing peptide-MHC binding predictors using a query by committee approach.
    Christensen JK; Lamberth K; Nielsen M; Lundegaard C; Worning P; Lauemøller SL; Buus S; Brunak S; Lund O
    Neural Comput; 2003 Dec; 15(12):2931-42. PubMed ID: 14629874
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of peptide-protein binding using amino acid descriptors: prediction and experimental verification for human histocompatibility complex HLA-A0201.
    Guan P; Doytchinova IA; Walshe VA; Borrow P; Flower DR
    J Med Chem; 2005 Nov; 48(23):7418-25. PubMed ID: 16279801
    [TBL] [Abstract][Full Text] [Related]  

  • 18. POPI: predicting immunogenicity of MHC class I binding peptides by mining informative physicochemical properties.
    Tung CW; Ho SY
    Bioinformatics; 2007 Apr; 23(8):942-9. PubMed ID: 17384427
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Class II HLA-peptide binding prediction using structural principles.
    Mohanapriya A; Lulu S; Kayathri R; Kangueane P
    Hum Immunol; 2009 Mar; 70(3):159-69. PubMed ID: 19187794
    [TBL] [Abstract][Full Text] [Related]  

  • 20. BiodMHC: an online server for the prediction of MHC class II-peptide binding affinity.
    Wang L; Pan D; Hu X; Xiao J; Gao Y; Zhang H; Zhang Y; Liu J; Zhu S
    J Genet Genomics; 2009 May; 36(5):289-96. PubMed ID: 19447377
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.