BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

347 related articles for article (PubMed ID: 15879212)

  • 1. The optical resonances in carbon nanotubes arise from excitons.
    Wang F; Dukovic G; Brus LE; Heinz TF
    Science; 2005 May; 308(5723):838-41. PubMed ID: 15879212
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photophysics of individual single-walled carbon nanotubes.
    Carlson LJ; Krauss TD
    Acc Chem Res; 2008 Feb; 41(2):235-43. PubMed ID: 18281946
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Excitons in semiconducting carbon nanotubes: diameter-dependent photoluminescence spectra.
    Kanemitsu Y
    Phys Chem Chem Phys; 2011 Sep; 13(33):14879-88. PubMed ID: 21735026
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electron-electron interaction effects on the photophysics of metallic single-walled carbon nanotubes.
    Wang Z; Psiachos D; Badilla RF; Mazumdar S
    J Phys Condens Matter; 2009 Mar; 21(9):095009. PubMed ID: 21817382
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exciton binding energy in semiconducting single-walled carbon nanotubes.
    Ma YZ; Valkunas L; Bachilo SM; Fleming GR
    J Phys Chem B; 2005 Aug; 109(33):15671-4. PubMed ID: 16852986
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diminished band-gap transitions of single-walled carbon nanotubes in complexation with aromatic molecules.
    Fernando KA; Lin Y; Wang W; Kumar S; Zhou B; Xie SY; Cureton LT; Sun YP
    J Am Chem Soc; 2004 Aug; 126(33):10234-5. PubMed ID: 15315422
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exciton-exciton correlations revealed by two-quantum, two-dimensional fourier transform optical spectroscopy.
    Stone KW; Turner DB; Gundogdu K; Cundiff ST; Nelson KA
    Acc Chem Res; 2009 Sep; 42(9):1452-61. PubMed ID: 19691277
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical spectroscopy of individual single-walled carbon nanotubes of defined chiral structure.
    Sfeir MY; Beetz T; Wang F; Huang L; Huang XM; Huang M; Hone J; O'Brien S; Misewich JA; Heinz TF; Wu L; Zhu Y; Brus LE
    Science; 2006 Apr; 312(5773):554-6. PubMed ID: 16645089
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bright and dark excitons in semiconductor carbon nanotubes: insights from electronic structure calculations.
    Kilina S; Badaeva E; Piryatinski A; Tretiak S; Saxena A; Bishop AR
    Phys Chem Chem Phys; 2009 Jun; 11(21):4113-23. PubMed ID: 19458812
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrochemistry at single-walled carbon nanotubes: the role of band structure and quantum capacitance.
    Heller I; Kong J; Williams KA; Dekker C; Lemay SG
    J Am Chem Soc; 2006 Jun; 128(22):7353-9. PubMed ID: 16734491
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurement of electron-electron interactions and correlations using two-dimensional electronic double-quantum coherence spectroscopy.
    Kim J; Huxter VM; Curutchet C; Scholes GD
    J Phys Chem A; 2009 Nov; 113(44):12122-33. PubMed ID: 19817401
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of KI encapsulation in single-walled carbon nanotubes by Raman and optical absorption spectroscopy.
    Ilie A; Bendall JS; Roy D; Philp E; Green ML
    J Phys Chem B; 2006 Jul; 110(28):13848-57. PubMed ID: 16836333
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exciton states and optical properties of carbon nanotubes.
    Ajiki H
    J Phys Condens Matter; 2012 Dec; 24(48):483001. PubMed ID: 23139202
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electron-electron interaction effects on the optical excitations of semiconducting single-walled carbon nanotubes.
    Zhao H; Mazumdar S
    Phys Rev Lett; 2004 Oct; 93(15):157402. PubMed ID: 15524940
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple exciton generation and recombination in carbon nanotubes and nanocrystals.
    Kanemitsu Y
    Acc Chem Res; 2013 Jun; 46(6):1358-66. PubMed ID: 23421584
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bright infrared emission from electrically induced excitons in carbon nanotubes.
    Chen J; Perebeinos V; Freitag M; Tsang J; Fu Q; Liu J; Avouris P
    Science; 2005 Nov; 310(5751):1171-4. PubMed ID: 16293757
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrafast carrier dynamics in single-walled carbon nanotubes probed by femtosecond spectroscopy.
    Ma YZ; Stenger J; Zimmermann J; Bachilo SM; Smalley RE; Weisman RB; Fleming GR
    J Chem Phys; 2004 Feb; 120(7):3368-73. PubMed ID: 15268491
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrafast energy transfer of one-dimensional excitons between carbon nanotubes: a femtosecond time-resolved luminescence study.
    Koyama T; Miyata Y; Asaka K; Shinohara H; Saito Y; Nakamura A
    Phys Chem Chem Phys; 2012 Jan; 14(3):1070-84. PubMed ID: 22127395
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Higher energy optical transitions in semiconducting carbon nanotubes.
    Jia Y; Yu G; Dong J
    Nanotechnology; 2009 Apr; 20(15):155708. PubMed ID: 19420560
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectroscopic characteristics of differently produced single-walled carbon nanotubes.
    Li Z; Zheng L; Yan W; Pan Z; Wei S
    Chemphyschem; 2009 Sep; 10(13):2296-304. PubMed ID: 19569089
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.