These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
261 related articles for article (PubMed ID: 15879448)
1. Involvement of ARM2 in the uptake of indole-3-butyric acid in rice (Oryza sativa L.) roots. Chhun T; Taketa S; Ichii M; Tsurumi S Plant Cell Physiol; 2005 Jul; 46(7):1161-4. PubMed ID: 15879448 [TBL] [Abstract][Full Text] [Related]
2. Interaction between two auxin-resistant mutants and their effects on lateral root formation in rice (Oryza sativa L.). Chhun T; Taketa S; Tsurumi S; Ichii M J Exp Bot; 2003 Dec; 54(393):2701-8. PubMed ID: 14623941 [TBL] [Abstract][Full Text] [Related]
3. Saturated humidity accelerates lateral root development in rice (Oryza sativa L.) seedlings by increasing phloem-based auxin transport. Chhun T; Uno Y; Taketa S; Azuma T; Ichii M; Okamoto T; Tsurumi S J Exp Bot; 2007; 58(7):1695-704. PubMed ID: 17383991 [TBL] [Abstract][Full Text] [Related]
4. Over-expression of OsAGAP, an ARF-GAP, interferes with auxin influx, vesicle trafficking and root development. Zhuang X; Jiang J; Li J; Ma Q; Xu Y; Xue Y; Xu Z; Chong K Plant J; 2006 Nov; 48(4):581-91. PubMed ID: 17059407 [TBL] [Abstract][Full Text] [Related]
5. The auxin responsive AP2/ERF transcription factor CROWN ROOTLESS5 is involved in crown root initiation in rice through the induction of OsRR1, a type-A response regulator of cytokinin signaling. Kitomi Y; Ito H; Hobo T; Aya K; Kitano H; Inukai Y Plant J; 2011 Aug; 67(3):472-84. PubMed ID: 21481033 [TBL] [Abstract][Full Text] [Related]
6. Constitutive expression of pathogen-inducible OsWRKY31 enhances disease resistance and affects root growth and auxin response in transgenic rice plants. Zhang J; Peng Y; Guo Z Cell Res; 2008 Apr; 18(4):508-21. PubMed ID: 18071364 [TBL] [Abstract][Full Text] [Related]
7. Crown rootless1, which is essential for crown root formation in rice, is a target of an AUXIN RESPONSE FACTOR in auxin signaling. Inukai Y; Sakamoto T; Ueguchi-Tanaka M; Shibata Y; Gomi K; Umemura I; Hasegawa Y; Ashikari M; Kitano H; Matsuoka M Plant Cell; 2005 May; 17(5):1387-96. PubMed ID: 15829602 [TBL] [Abstract][Full Text] [Related]
8. The rib1 mutant of Arabidopsis has alterations in indole-3-butyric acid transport, hypocotyl elongation, and root architecture. Poupart J; Rashotte AM; Muday GK; Waddell CS Plant Physiol; 2005 Nov; 139(3):1460-71. PubMed ID: 16258013 [TBL] [Abstract][Full Text] [Related]
9. Metabolism of indole-3-acetic acid in rice: identification and characterization of N-beta-D-glucopyranosyl indole-3-acetic acid and its conjugates. Kai K; Wakasa K; Miyagawa H Phytochemistry; 2007 Oct; 68(20):2512-22. PubMed ID: 17628621 [TBL] [Abstract][Full Text] [Related]
10. A rice tryptophan deficient dwarf mutant, tdd1, contains a reduced level of indole acetic acid and develops abnormal flowers and organless embryos. Sazuka T; Kamiya N; Nishimura T; Ohmae K; Sato Y; Imamura K; Nagato Y; Koshiba T; Nagamura Y; Ashikari M; Kitano H; Matsuoka M Plant J; 2009 Oct; 60(2):227-41. PubMed ID: 19682283 [TBL] [Abstract][Full Text] [Related]
11. Over-expression of OsPIN2 leads to increased tiller numbers, angle and shorter plant height through suppression of OsLAZY1. Chen Y; Fan X; Song W; Zhang Y; Xu G Plant Biotechnol J; 2012 Feb; 10(2):139-49. PubMed ID: 21777365 [TBL] [Abstract][Full Text] [Related]
12. OsABCB14 functions in auxin transport and iron homeostasis in rice (Oryza sativa L.). Xu Y; Zhang S; Guo H; Wang S; Xu L; Li C; Qian Q; Chen F; Geisler M; Qi Y; Jiang de A Plant J; 2014 Jul; 79(1):106-17. PubMed ID: 24798203 [TBL] [Abstract][Full Text] [Related]
13. A gain-of-function mutation in OsIAA11 affects lateral root development in rice. Zhu ZX; Liu Y; Liu SJ; Mao CZ; Wu YR; Wu P Mol Plant; 2012 Jan; 5(1):154-61. PubMed ID: 21914651 [TBL] [Abstract][Full Text] [Related]
14. OsAUX1 controls lateral root initiation in rice (Oryza sativa L.). Zhao H; Ma T; Wang X; Deng Y; Ma H; Zhang R; Zhao J Plant Cell Environ; 2015 Nov; 38(11):2208-22. PubMed ID: 25311360 [TBL] [Abstract][Full Text] [Related]
15. LATERAL ROOTLESS2, a cyclophilin protein, regulates lateral root initiation and auxin signaling pathway in rice. Zheng H; Li S; Ren B; Zhang J; Ichii M; Taketa S; Tao Y; Zuo J; Wang H Mol Plant; 2013 Sep; 6(5):1719-21. PubMed ID: 23501875 [No Abstract] [Full Text] [Related]
16. OsARF16, a transcription factor, is required for auxin and phosphate starvation response in rice (Oryza sativa L.). Shen C; Wang S; Zhang S; Xu Y; Qian Q; Qi Y; Jiang de A Plant Cell Environ; 2013 Mar; 36(3):607-20. PubMed ID: 22913536 [TBL] [Abstract][Full Text] [Related]
17. RNAi knockdown of Oryza sativa root meander curling gene led to altered root development and coiling which were mediated by jasmonic acid signalling in rice. Jiang J; Li J; Xu Y; Han Y; Bai Y; Zhou G; Lou Y; Xu Z; Chong K Plant Cell Environ; 2007 Jun; 30(6):690-9. PubMed ID: 17470145 [TBL] [Abstract][Full Text] [Related]
18. The rib1 mutant is resistant to indole-3-butyric acid, an endogenous auxin in Arabidopsis. Poupart J; Waddell CS Plant Physiol; 2000 Dec; 124(4):1739-51. PubMed ID: 11115890 [TBL] [Abstract][Full Text] [Related]
19. OsBLE3, a brassinolide-enhanced gene, is involved in the growth of rice. Yang G; Nakamura H; Ichikawa H; Kitano H; Komatsu S Phytochemistry; 2006 Jul; 67(14):1442-54. PubMed ID: 16808934 [TBL] [Abstract][Full Text] [Related]
20. Adventitious root formation in rice requires OsGNOM1 and is mediated by the OsPINs family. Liu S; Wang J; Wang L; Wang X; Xue Y; Wu P; Shou H Cell Res; 2009 Sep; 19(9):1110-9. PubMed ID: 19546891 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]