These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 15880115)

  • 41. Polyaniline-coated Fe3O4 nanoparticle-carbon-nanotube composite and its application in electrochemical biosensing.
    Liu Z; Wang J; Xie D; Chen G
    Small; 2008 Apr; 4(4):462-6. PubMed ID: 18383578
    [No Abstract]   [Full Text] [Related]  

  • 42. Solid-state microwave-arcing-induced formation and surface functionalization of core/shell metal/carbon nanoparticles.
    Liang YC; Hwang KC; Lo SC
    Small; 2008 Apr; 4(4):405-9. PubMed ID: 18383573
    [No Abstract]   [Full Text] [Related]  

  • 43. Carbon nanotube guided formation of silicon oxide nanotrenches.
    Byon HR; Choi HC
    Nat Nanotechnol; 2007 Mar; 2(3):162-6. PubMed ID: 18654246
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Materials synthesis: towering forests of nanotube trees.
    Baughman RH
    Nat Nanotechnol; 2006 Nov; 1(2):94-6. PubMed ID: 18654155
    [No Abstract]   [Full Text] [Related]  

  • 45. Corrugated paraffin nanocomposite films as large stroke thermal actuators and self-activating thermal interfaces.
    Copic D; Hart AJ
    ACS Appl Mater Interfaces; 2015 Apr; 7(15):8218-24. PubMed ID: 25822633
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Nanotube devices: Watching electrons in real time.
    Habenicht BF; Prezhdo OV
    Nat Nanotechnol; 2008 Apr; 3(4):190-1. PubMed ID: 18654500
    [No Abstract]   [Full Text] [Related]  

  • 47. Tuning the conductance of single-walled carbon nanotubes by ion irradiation in the Anderson localization regime.
    Gómez-Navarro C; de Pablo PJ; Gómez-Herrero J; Biel B; Garcia-Vidal FJ; Rubio A; Flores F
    Nat Mater; 2005 Jul; 4(7):534-9. PubMed ID: 15965479
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Synthesis, characterization, and manipulation of nitrogen-doped carbon nanotube cups.
    Allen BL; Kichambare PD; Star A
    ACS Nano; 2008 Sep; 2(9):1914-20. PubMed ID: 19206432
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Electrical bistabilities and operating mechanisms of memory devices fabricated utilizing ZnO quantum dot-multi-walled carbon nanotube nanocomposites.
    Li F; Son DI; Cho SH; Kim TW
    Nanotechnology; 2009 May; 20(18):185202. PubMed ID: 19420606
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mobility of carbon nanotubes in high electric fields.
    Koratkar N; Modi A; Kim J; Wei BQ; Vajtai R; Talapatra S; Ajayan PM
    J Nanosci Nanotechnol; 2004; 4(1-2):69-71. PubMed ID: 15112543
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Novel nanocomposite actuator based on sulfonated poly(styrene-b-ethylene-co-butylene-b-styrene) polymer.
    Jung JY; Oh IK
    J Nanosci Nanotechnol; 2007 Nov; 7(11):3740-3. PubMed ID: 18047049
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Strain tuning of the photocurrent spectrum in single-wall carbon nanotubes.
    Gopinath P; Mohite A; Shah H; Lin JT; Alphenaar BW
    Nano Lett; 2007 Oct; 7(10):3092-6. PubMed ID: 17887716
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Integrated three-dimensional microelectromechanical devices from processable carbon nanotube wafers.
    Hayamizu Y; Yamada T; Mizuno K; Davis RC; Futaba DN; Yumura M; Hata K
    Nat Nanotechnol; 2008 May; 3(5):289-94. PubMed ID: 18654526
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Characterization of polydimethylsiloxane (PDMS) properties for biomedical micro/nanosystems.
    Mata A; Fleischman AJ; Roy S
    Biomed Microdevices; 2005 Dec; 7(4):281-93. PubMed ID: 16404506
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Carbon nanotube--poly(3-octylthiophene) composite photovoltaic cells.
    Carroll DL; Czerw R; Harrison B
    J Nanosci Nanotechnol; 2006 Jul; 6(7):2204-7. PubMed ID: 17025151
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Large-Deformation Curling Actuators Based on Carbon Nanotube Composite: Advanced-Structure Design and Biomimetic Application.
    Chen L; Weng M; Zhou Z; Zhou Y; Zhang L; Li J; Huang Z; Zhang W; Liu C; Fan S
    ACS Nano; 2015 Dec; 9(12):12189-96. PubMed ID: 26512734
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Anisotropic thermal diffusivity characterization of aligned carbon nanotube-polymer composites.
    Borca-Tasciuc T; Mazumder M; Son Y; Pal SK; Schadler LS; Ajayan PM
    J Nanosci Nanotechnol; 2007; 7(4-5):1581-8. PubMed ID: 17450929
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Mechanical alignment of quasi-one-dimensional nanoparticles.
    Frogley MD; Wagner HD
    J Nanosci Nanotechnol; 2002 Oct; 2(5):517-21. PubMed ID: 12908290
    [TBL] [Abstract][Full Text] [Related]  

  • 59. An ultra-large deformation bidirectional actuator based on a carbon nanotube/PDMS composite and a chitosan film.
    Xu H; Xu X; Xu J; Dai S; Dong X; Han F; Yuan N; Ding J
    J Mater Chem B; 2019 Dec; 7(47):7558-7565. PubMed ID: 31724692
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Graphene-nanoplatelet-based photomechanical actuators.
    Loomis J; King B; Burkhead T; Xu P; Bessler N; Terentjev E; Panchapakesan B
    Nanotechnology; 2012 Feb; 23(4):045501. PubMed ID: 22222415
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.