BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 15880548)

  • 1. Recognition of proline-rich motifs by protein-protein-interaction domains.
    Ball LJ; Kühne R; Schneider-Mergener J; Oschkinat H
    Angew Chem Int Ed Engl; 2005 May; 44(19):2852-69. PubMed ID: 15880548
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proline-rich sequence recognition domains (PRD): ligands, function and inhibition.
    Freund C; Schmalz HG; Sticht J; Kühne R
    Handb Exp Pharmacol; 2008; (186):407-29. PubMed ID: 18491062
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Binding of the proline-rich segment of myelin basic protein to SH3 domains: spectroscopic, microarray, and modeling studies of ligand conformation and effects of posttranslational modifications.
    Polverini E; Rangaraj G; Libich DS; Boggs JM; Harauz G
    Biochemistry; 2008 Jan; 47(1):267-82. PubMed ID: 18067320
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Domain Interaction Footprint: a multi-classification approach to predict domain-peptide interactions.
    Schillinger C; Boisguerin P; Krause G
    Bioinformatics; 2009 Jul; 25(13):1632-9. PubMed ID: 19376827
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative structural and energetic analysis of WW domain-peptide interactions.
    Schleinkofer K; Wiedemann U; Otte L; Wang T; Krause G; Oschkinat H; Wade RC
    J Mol Biol; 2004 Nov; 344(3):865-81. PubMed ID: 15533451
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting protein-peptide interactions via a network-based motif sampler.
    Reiss DJ; Schwikowski B
    Bioinformatics; 2004 Aug; 20 Suppl 1():i274-82. PubMed ID: 15262809
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Profilin binds proline-rich ligands in two distinct amide backbone orientations.
    Mahoney NM; Rozwarski DA; Fedorov E; Fedorov AA; Almo SC
    Nat Struct Biol; 1999 Jul; 6(7):666-71. PubMed ID: 10404225
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The importance of being proline: the interaction of proline-rich motifs in signaling proteins with their cognate domains.
    Kay BK; Williamson MP; Sudol M
    FASEB J; 2000 Feb; 14(2):231-41. PubMed ID: 10657980
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structure analysis and solution studies of human Lck-SH3; zinc-induced homodimerization competes with the binding of proline-rich motifs.
    Romir J; Lilie H; Egerer-Sieber C; Bauer F; Sticht H; Muller YA
    J Mol Biol; 2007 Feb; 365(5):1417-28. PubMed ID: 17118402
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular mechanism of NPF recognition by EH domains.
    de Beer T; Hoofnagle AN; Enmon JL; Bowers RC; Yamabhai M; Kay BK; Overduin M
    Nat Struct Biol; 2000 Nov; 7(11):1018-22. PubMed ID: 11062555
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alternative binding modes of proline-rich peptides binding to the GYF domain.
    Gu W; Kofler M; Antes I; Freund C; Helms V
    Biochemistry; 2005 May; 44(17):6404-15. PubMed ID: 15850374
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantification of PDZ domain specificity, prediction of ligand affinity and rational design of super-binding peptides.
    Wiedemann U; Boisguerin P; Leben R; Leitner D; Krause G; Moelling K; Volkmer-Engert R; Oschkinat H
    J Mol Biol; 2004 Oct; 343(3):703-18. PubMed ID: 15465056
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Importance of CH/π hydrogen bonds in recognition of the core motif in proline-recognition domains: an ab initio fragment molecular orbital study.
    Ozawa T; Okazaki K; Kitaura K
    J Comput Chem; 2011 Oct; 32(13):2774-82. PubMed ID: 21710635
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-resolution structural analysis of mammalian profilin 2a complex formation with two physiological ligands: the formin homology 1 domain of mDia1 and the proline-rich domain of VASP.
    Kursula P; Kursula I; Massimi M; Song YH; Downer J; Stanley WA; Witke W; Wilmanns M
    J Mol Biol; 2008 Jan; 375(1):270-90. PubMed ID: 18001770
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification and specificity studies of small-molecule ligands for SH3 protein domains.
    Inglis SR; Stojkoski C; Branson KM; Cawthray JF; Fritz D; Wiadrowski E; Pyke SM; Booker GW
    J Med Chem; 2004 Oct; 47(22):5405-17. PubMed ID: 15481978
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural basis of the differential binding of the SH3 domains of Grb2 adaptor to the guanine nucleotide exchange factor Sos1.
    McDonald CB; Seldeen KL; Deegan BJ; Farooq A
    Arch Biochem Biophys; 2008 Nov; 479(1):52-62. PubMed ID: 18778683
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The structure and function of proline recognition domains.
    Zarrinpar A; Bhattacharyya RP; Lim WA
    Sci STKE; 2003 Apr; 2003(179):RE8. PubMed ID: 12709533
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural characterization of a new binding motif and a novel binding mode in group 2 WW domains.
    Ramirez-Espain X; Ruiz L; Martin-Malpartida P; Oschkinat H; Macias MJ
    J Mol Biol; 2007 Nov; 373(5):1255-68. PubMed ID: 17915251
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The GYF domain.
    Kofler MM; Freund C
    FEBS J; 2006 Jan; 273(2):245-56. PubMed ID: 16403013
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure of EVH1, a novel proline-rich ligand-binding module involved in cytoskeletal dynamics and neural function.
    Fedorov AA; Fedorov E; Gertler F; Almo SC
    Nat Struct Biol; 1999 Jul; 6(7):661-5. PubMed ID: 10404224
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.