These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 15880552)

  • 1. A new mathematical function for describing electrophoretic peaks.
    García-Alvarez-Coque MC; Simó-Alfonso EF; Sanchis-Mallols JM; Baeza-Baeza JJ
    Electrophoresis; 2005 Jun; 26(11):2076-85. PubMed ID: 15880552
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development and evaluation of flexible empirical peak functions for processing chromatographic peaks.
    Li J
    Anal Chem; 1997 Nov; 69(21):4452-62. PubMed ID: 21639177
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New approaches based on modified Gaussian models for the prediction of chromatographic peaks.
    Baeza-Baeza JJ; Ortiz-Bolsico C; García-Álvarez-Coque MC
    Anal Chim Acta; 2013 Jan; 758():36-44. PubMed ID: 23245894
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of the correct migration time and other parameters of the Haarhoff-van der Linde function from the peak geometry characteristics.
    Dubský P; Dvořák M; Műllerová L; Gaš B
    Electrophoresis; 2015 Mar; 36(5):655-61. PubMed ID: 25475400
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Peak shape modeling by Haarhoff-Van der Linde function for the determination of correct migration times: a new insight into affinity capillary electrophoresis.
    Le Saux T; Varenne A; Gareil P
    Electrophoresis; 2005 Aug; 26(16):3094-104. PubMed ID: 16041707
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modified Gaussian models applied to the description and deconvolution of peaks in chiral liquid chromatography.
    Pérez-Baeza M; Escuder-Gilabert L; Medina-Hernández MJ; Baeza-Baeza JJ; García-Alvarez-Coque MC
    J Chromatogr A; 2020 Aug; 1625():461273. PubMed ID: 32709325
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of the capability of peak functions in describing real chromatographic peaks.
    Li J
    J Chromatogr A; 2002 Apr; 952(1-2):63-70. PubMed ID: 12064546
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Approaches to estimate the time and height at the peak maximum in liquid chromatography based on a modified Gaussian model.
    Baeza-Baeza JJ; Torres-Lapasió JR; García-Álvarez-Coque MC
    J Chromatogr A; 2011 Mar; 1218(10):1385-92. PubMed ID: 21295309
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Parabolic-Lorentzian modified Gaussian model for describing and deconvolving chromatographic peaks.
    Caballero RD; García-Alvarez-Coque MC; Baeza-Baeza JJ
    J Chromatogr A; 2002 Apr; 954(1-2):59-76. PubMed ID: 12058919
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting peak shape in capillary zone electrophoresis: a generic approach to parametrizing peaks using the Haarhoff-Van der Linde (HVL) function.
    Erny GL; Bergström ET; Goodall DM; Grieb S
    Anal Chem; 2001 Oct; 73(20):4862-72. PubMed ID: 11681462
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fitting Lorentzian peaks with evolutionary genetic algorithm based on stochastic search procedure.
    Karakaplan M
    Anal Chim Acta; 2007 Mar; 587(2):235-9. PubMed ID: 17386778
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stump-like mathematical model and computer simulation on dynamic separation of capillary zone electrophoresis with different sample injections.
    Zhang J; Huang QF; Jin J; Chang J; Li S; Fan LY; Cao CX
    Talanta; 2013 Feb; 105():278-86. PubMed ID: 23598020
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of peak shape in hydro-organic and micellar-organic liquid chromatography as a function of mobile phase composition.
    Baeza-Baeza JJ; Ruiz-Angel MJ; García-Alvarez-Coque MC
    J Chromatogr A; 2007 Sep; 1163(1-2):119-27. PubMed ID: 17612547
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electromigration dispersion in capillary zone electrophoresis. Experimental validation of use of the Haarhoff-Van der Linde function.
    Erny GL; Bergström ET; Goodall DM
    J Chromatogr A; 2002 Jun; 959(1-2):229-39. PubMed ID: 12141548
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Peak capacity estimation in isocratic elution.
    Pous-Torres S; Baeza-Baeza JJ; Torres-Lapasió JR; García-Alvarez-Coque MC
    J Chromatogr A; 2008 Sep; 1205(1-2):78-89. PubMed ID: 18752801
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of theoretical and semi-empirical peak models on the efficiency calculation in chiral chromatography.
    Burk RJ; Wahab MF; Armstrong DW
    Talanta; 2024 Sep; 277():126308. PubMed ID: 38820823
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dispersion-convolution model for simulating peaks in a flow injection system.
    Pai SC; Lai YH; Chiao LY; Yu T
    J Chromatogr A; 2007 Jan; 1139(1):109-20. PubMed ID: 17116303
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modelling of radon concentration peaks in thermal spas: application to Polichnitos and Eftalou spas (Lesvos Island--Greece).
    Vogiannis E; Nikolopoulos D
    Sci Total Environ; 2008 Nov; 405(1-3):36-44. PubMed ID: 18715628
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An evaluation of substrate degradation patterns in the composting process. Part 2: temperature-corrected profiles.
    Mason IG
    Waste Manag; 2008; 28(10):1751-65. PubMed ID: 17855070
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chromatogram simulation by area reproduction.
    Boe B
    J Chromatogr A; 2007 Jan; 1139(1):1-6. PubMed ID: 17126353
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.