BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 15882057)

  • 1. Accumulation of multiple intermediates in the catalytic cycle of (4-hydroxyphenyl)pyruvate dioxygenase from Streptomyces avermitilis.
    Johnson-Winters K; Purpero VM; Kavana M; Moran GR
    Biochemistry; 2005 May; 44(19):7189-99. PubMed ID: 15882057
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 4-Hydroxyphenylpyruvate dioxygenase.
    Moran GR
    Arch Biochem Biophys; 2005 Jan; 433(1):117-28. PubMed ID: 15581571
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction of (4-hydroxyphenyl)pyruvate dioxygenase with the specific inhibitor 2-[2-nitro-4-(trifluoromethyl)benzoyl]-1,3-cyclohexanedione.
    Kavana M; Moran GR
    Biochemistry; 2003 Sep; 42(34):10238-45. PubMed ID: 12939152
    [TBL] [Abstract][Full Text] [Related]  

  • 4. (4-Hydroxyphenyl)pyruvate dioxygenase from Streptomyces avermitilis: the basis for ordered substrate addition.
    Johnson-Winters K; Purpero VM; Kavana M; Nelson T; Moran GR
    Biochemistry; 2003 Feb; 42(7):2072-80. PubMed ID: 12590595
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catalytic, noncatalytic, and inhibitory phenomena: kinetic analysis of (4-hydroxyphenyl)pyruvate dioxygenase from Arabidopsis thaliana.
    Purpero VM; Moran GR
    Biochemistry; 2006 May; 45(19):6044-55. PubMed ID: 16681377
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The rate-limiting catalytic steps of hydroxymandelate synthase from Amycolatopsis orientalis.
    He P; Conrad JA; Moran GR
    Biochemistry; 2010 Mar; 49(9):1998-2007. PubMed ID: 20112984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence for the mechanism of hydroxylation by 4-hydroxyphenylpyruvate dioxygenase and hydroxymandelate synthase from intermediate partitioning in active site variants.
    Shah DD; Conrad JA; Heinz B; Brownlee JM; Moran GR
    Biochemistry; 2011 Sep; 50(35):7694-704. PubMed ID: 21815644
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure of the ferrous form of (4-hydroxyphenyl)pyruvate dioxygenase from Streptomyces avermitilis in complex with the therapeutic herbicide, NTBC.
    Brownlee JM; Johnson-Winters K; Harrison DH; Moran GR
    Biochemistry; 2004 Jun; 43(21):6370-7. PubMed ID: 15157070
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spectroscopic and electronic structure studies of the role of active site interactions in the decarboxylation reaction of alpha-keto acid-dependent dioxygenases.
    Neidig ML; Brown CD; Kavana M; Choroba OW; Spencer JB; Moran GR; Solomon EI
    J Inorg Biochem; 2006 Dec; 100(12):2108-16. PubMed ID: 17070917
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectroscopic and computational studies of NTBC bound to the non-heme iron enzyme (4-hydroxyphenyl)pyruvate dioxygenase: active site contributions to drug inhibition.
    Neidig ML; Decker A; Kavana M; Moran GR; Solomon EI
    Biochem Biophys Res Commun; 2005 Dec; 338(1):206-14. PubMed ID: 16197918
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic isotope effects as probes of the mechanism of galactose oxidase.
    Whittaker MM; Ballou DP; Whittaker JW
    Biochemistry; 1998 Jun; 37(23):8426-36. PubMed ID: 9622494
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering p-hydroxyphenylpyruvate dioxygenase to a p-hydroxymandelate synthase and evidence for the proposed benzene oxide intermediate in homogentisate formation.
    Gunsior M; Ravel J; Challis GL; Townsend CA
    Biochemistry; 2004 Jan; 43(3):663-74. PubMed ID: 14730970
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CD and MCD studies of the non-heme ferrous active site in (4-hydroxyphenyl)pyruvate dioxygenase: correlation between oxygen activation in the extradiol and alpha-KG-dependent dioxygenases.
    Neidig ML; Kavana M; Moran GR; Solomon EI
    J Am Chem Soc; 2004 Apr; 126(14):4486-7. PubMed ID: 15070344
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intermediate partitioning kinetic isotope effects for the NIH shift of 4-hydroxyphenylpyruvate dioxygenase and the hydroxylation reaction of hydroxymandelate synthase reveal mechanistic complexity.
    Shah DD; Conrad JA; Moran GR
    Biochemistry; 2013 Sep; 52(35):6097-107. PubMed ID: 23941465
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing the role of tightly bound phosphoenolpyruvate in Escherichia coli 3-deoxy-d-manno-octulosonate 8-phosphate synthase catalysis using quantitative time-resolved electrospray ionization mass spectrometry in the millisecond time range.
    Li Z; Sau AK; Furdui CM; Anderson KS
    Anal Biochem; 2005 Aug; 343(1):35-47. PubMed ID: 15979047
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rate-limiting steps in oxidations catalyzed by rabbit cytochrome P450 1A2.
    Guengerich FP; Krauser JA; Johnson WW
    Biochemistry; 2004 Aug; 43(33):10775-88. PubMed ID: 15311939
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Substrate specificity and kinetic isotope effect analysis of the Eschericia coli ketopantoate reductase.
    Zheng R; Blanchard JS
    Biochemistry; 2003 Sep; 42(38):11289-96. PubMed ID: 14503879
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 4-Hydroxyphenylpyruvate dioxygenase: a hybrid density functional study of the catalytic reaction mechanism.
    Borowski T; Bassan A; Siegbahn PE
    Biochemistry; 2004 Sep; 43(38):12331-42. PubMed ID: 15379572
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The catalytic mechanism of kynureninase from Pseudomonas fluorescens: evidence for transient quinonoid and ketimine intermediates from rapid-scanning stopped-flow spectrophotometry.
    Phillips RS; Sundararaju B; Koushik SV
    Biochemistry; 1998 Jun; 37(24):8783-9. PubMed ID: 9628740
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic mechanism and enantioselectivity of halohydrin dehalogenase from Agrobacterium radiobacter.
    Tang L; Lutje Spelberg JH; Fraaije MW; Janssen DB
    Biochemistry; 2003 May; 42(18):5378-86. PubMed ID: 12731879
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.