These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
237 related articles for article (PubMed ID: 15882057)
1. Accumulation of multiple intermediates in the catalytic cycle of (4-hydroxyphenyl)pyruvate dioxygenase from Streptomyces avermitilis. Johnson-Winters K; Purpero VM; Kavana M; Moran GR Biochemistry; 2005 May; 44(19):7189-99. PubMed ID: 15882057 [TBL] [Abstract][Full Text] [Related]
3. Interaction of (4-hydroxyphenyl)pyruvate dioxygenase with the specific inhibitor 2-[2-nitro-4-(trifluoromethyl)benzoyl]-1,3-cyclohexanedione. Kavana M; Moran GR Biochemistry; 2003 Sep; 42(34):10238-45. PubMed ID: 12939152 [TBL] [Abstract][Full Text] [Related]
4. (4-Hydroxyphenyl)pyruvate dioxygenase from Streptomyces avermitilis: the basis for ordered substrate addition. Johnson-Winters K; Purpero VM; Kavana M; Nelson T; Moran GR Biochemistry; 2003 Feb; 42(7):2072-80. PubMed ID: 12590595 [TBL] [Abstract][Full Text] [Related]
5. Catalytic, noncatalytic, and inhibitory phenomena: kinetic analysis of (4-hydroxyphenyl)pyruvate dioxygenase from Arabidopsis thaliana. Purpero VM; Moran GR Biochemistry; 2006 May; 45(19):6044-55. PubMed ID: 16681377 [TBL] [Abstract][Full Text] [Related]
6. The rate-limiting catalytic steps of hydroxymandelate synthase from Amycolatopsis orientalis. He P; Conrad JA; Moran GR Biochemistry; 2010 Mar; 49(9):1998-2007. PubMed ID: 20112984 [TBL] [Abstract][Full Text] [Related]
7. Evidence for the mechanism of hydroxylation by 4-hydroxyphenylpyruvate dioxygenase and hydroxymandelate synthase from intermediate partitioning in active site variants. Shah DD; Conrad JA; Heinz B; Brownlee JM; Moran GR Biochemistry; 2011 Sep; 50(35):7694-704. PubMed ID: 21815644 [TBL] [Abstract][Full Text] [Related]
8. Structure of the ferrous form of (4-hydroxyphenyl)pyruvate dioxygenase from Streptomyces avermitilis in complex with the therapeutic herbicide, NTBC. Brownlee JM; Johnson-Winters K; Harrison DH; Moran GR Biochemistry; 2004 Jun; 43(21):6370-7. PubMed ID: 15157070 [TBL] [Abstract][Full Text] [Related]
9. Spectroscopic and electronic structure studies of the role of active site interactions in the decarboxylation reaction of alpha-keto acid-dependent dioxygenases. Neidig ML; Brown CD; Kavana M; Choroba OW; Spencer JB; Moran GR; Solomon EI J Inorg Biochem; 2006 Dec; 100(12):2108-16. PubMed ID: 17070917 [TBL] [Abstract][Full Text] [Related]
10. Spectroscopic and computational studies of NTBC bound to the non-heme iron enzyme (4-hydroxyphenyl)pyruvate dioxygenase: active site contributions to drug inhibition. Neidig ML; Decker A; Kavana M; Moran GR; Solomon EI Biochem Biophys Res Commun; 2005 Dec; 338(1):206-14. PubMed ID: 16197918 [TBL] [Abstract][Full Text] [Related]
11. Kinetic isotope effects as probes of the mechanism of galactose oxidase. Whittaker MM; Ballou DP; Whittaker JW Biochemistry; 1998 Jun; 37(23):8426-36. PubMed ID: 9622494 [TBL] [Abstract][Full Text] [Related]
12. Engineering p-hydroxyphenylpyruvate dioxygenase to a p-hydroxymandelate synthase and evidence for the proposed benzene oxide intermediate in homogentisate formation. Gunsior M; Ravel J; Challis GL; Townsend CA Biochemistry; 2004 Jan; 43(3):663-74. PubMed ID: 14730970 [TBL] [Abstract][Full Text] [Related]
13. CD and MCD studies of the non-heme ferrous active site in (4-hydroxyphenyl)pyruvate dioxygenase: correlation between oxygen activation in the extradiol and alpha-KG-dependent dioxygenases. Neidig ML; Kavana M; Moran GR; Solomon EI J Am Chem Soc; 2004 Apr; 126(14):4486-7. PubMed ID: 15070344 [TBL] [Abstract][Full Text] [Related]
14. Intermediate partitioning kinetic isotope effects for the NIH shift of 4-hydroxyphenylpyruvate dioxygenase and the hydroxylation reaction of hydroxymandelate synthase reveal mechanistic complexity. Shah DD; Conrad JA; Moran GR Biochemistry; 2013 Sep; 52(35):6097-107. PubMed ID: 23941465 [TBL] [Abstract][Full Text] [Related]
15. Probing the role of tightly bound phosphoenolpyruvate in Escherichia coli 3-deoxy-d-manno-octulosonate 8-phosphate synthase catalysis using quantitative time-resolved electrospray ionization mass spectrometry in the millisecond time range. Li Z; Sau AK; Furdui CM; Anderson KS Anal Biochem; 2005 Aug; 343(1):35-47. PubMed ID: 15979047 [TBL] [Abstract][Full Text] [Related]
16. Rate-limiting steps in oxidations catalyzed by rabbit cytochrome P450 1A2. Guengerich FP; Krauser JA; Johnson WW Biochemistry; 2004 Aug; 43(33):10775-88. PubMed ID: 15311939 [TBL] [Abstract][Full Text] [Related]
17. Substrate specificity and kinetic isotope effect analysis of the Eschericia coli ketopantoate reductase. Zheng R; Blanchard JS Biochemistry; 2003 Sep; 42(38):11289-96. PubMed ID: 14503879 [TBL] [Abstract][Full Text] [Related]
18. 4-Hydroxyphenylpyruvate dioxygenase: a hybrid density functional study of the catalytic reaction mechanism. Borowski T; Bassan A; Siegbahn PE Biochemistry; 2004 Sep; 43(38):12331-42. PubMed ID: 15379572 [TBL] [Abstract][Full Text] [Related]
19. The catalytic mechanism of kynureninase from Pseudomonas fluorescens: evidence for transient quinonoid and ketimine intermediates from rapid-scanning stopped-flow spectrophotometry. Phillips RS; Sundararaju B; Koushik SV Biochemistry; 1998 Jun; 37(24):8783-9. PubMed ID: 9628740 [TBL] [Abstract][Full Text] [Related]
20. Kinetic mechanism and enantioselectivity of halohydrin dehalogenase from Agrobacterium radiobacter. Tang L; Lutje Spelberg JH; Fraaije MW; Janssen DB Biochemistry; 2003 May; 42(18):5378-86. PubMed ID: 12731879 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]