BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

340 related articles for article (PubMed ID: 15882618)

  • 21. Bacteriophage T4Dam DNA-(adenine-N(6))-methyltransferase. Comparison of pre-steady state and single turnover methylation of 40-mer duplexes containing two (un)modified target sites.
    Malygin EG; Sclavi B; Zinoviev VV; Evdokimov AA; Hattman S; Buckle M
    J Biol Chem; 2004 Nov; 279(48):50012-8. PubMed ID: 15375160
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Binding of EcoP15I DNA methyltransferase to DNA reveals a large structural distortion within the recognition sequence.
    Reddy YV; Rao DN
    J Mol Biol; 2000 May; 298(4):597-610. PubMed ID: 10788323
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Increasing DNA substrate specificity of the EcoDam DNA-(adenine N(6))-methyltransferase by site-directed mutagenesis.
    Elsawy H; Chahar S
    Biochemistry (Mosc); 2014 Nov; 79(11):1262-6. PubMed ID: 25540012
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interaction of the phage T4 Dam DNA-[N6-adenine] methyltransferase with oligonucleotides containing native or modified (defective) recognition sites.
    Malygin EG; Petrov NA; Gorbunov YA; Kossykh VG; Hattman S
    Nucleic Acids Res; 1997 Nov; 25(21):4393-9. PubMed ID: 9336474
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phage T4 DNA [N6-adenine] methyltransferase: kinetic studies using oligonucleotides containing native or modified recognition sites.
    Zinoviev VV; Evdokimov AA; Gorbunov YA; Malygin EG; Kossykh VG; Hattman S
    Biol Chem; 1998; 379(4-5):481-8. PubMed ID: 9628341
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Single turnover kinetics of phage T4 DNA-(N6-adenine)methyltransferase].
    Malygin EG; Ovechkina LG; Evdokimov AA; Zinov'ev VV
    Mol Biol (Mosk); 2001; 35(1):65-78. PubMed ID: 11234384
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparative studies of the phage T2 and T4 DNA (N6-adenine)methyltransferases: amino acid changes that affect catalytic activity.
    Kossykh VG; Schlagman SL; Hattman S
    J Bacteriol; 1997 May; 179(10):3239-43. PubMed ID: 9150219
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Changing the DNA recognition specificity of the EcoDam DNA-(adenine-N6)-methyltransferase by directed evolution.
    Chahar S; Elsawy H; Ragozin S; Jeltsch A
    J Mol Biol; 2010 Jan; 395(1):79-88. PubMed ID: 19766657
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Escherichia coli DNA adenine methyltransferase: intrasite processivity and substrate-induced dimerization and activation.
    Coffin SR; Reich NO
    Biochemistry; 2009 Aug; 48(31):7399-410. PubMed ID: 19580332
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Escherichia coli DNA adenine methyltransferase: the structural basis of processive catalysis and indirect read-out.
    Coffin SR; Reich NO
    J Biol Chem; 2009 Jul; 284(27):18390-400. PubMed ID: 19419959
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [The kinetic mechanism of phage T4 DNA-[N6-adenine]-methyltransferase].
    Evdokimov AA; Zinov'ev VV; Malygin EG
    Mol Biol (Mosk); 2002; 36(5):849-61. PubMed ID: 12391849
    [TBL] [Abstract][Full Text] [Related]  

  • 32. DNA interaction of the CcrM DNA methyltransferase: a mutational and modeling study.
    Albu RF; Zacharias M; Jurkowski TP; Jeltsch A
    Chembiochem; 2012 Jun; 13(9):1304-11. PubMed ID: 22639453
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Investigation of the C-terminal domain of the bacterial DNA-(adenine N6)-methyltransferase CcrM.
    Maier JA; Albu RF; Jurkowski TP; Jeltsch A
    Biochimie; 2015 Dec; 119():60-7. PubMed ID: 26475175
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structures of Escherichia coli DNA adenine methyltransferase (Dam) in complex with a non-GATC sequence: potential implications for methylation-independent transcriptional repression.
    Horton JR; Zhang X; Blumenthal RM; Cheng X
    Nucleic Acids Res; 2015 Apr; 43(8):4296-308. PubMed ID: 25845600
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The double role of methyl donor and allosteric effector of S-adenosyl-methionine for Dam methylase of E. coli.
    Bergerat A; Guschlbauer W
    Nucleic Acids Res; 1990 Aug; 18(15):4369-75. PubMed ID: 2201947
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Two alternative conformations of S-adenosyl-L-homocysteine bound to Escherichia coli DNA adenine methyltransferase and the implication of conformational changes in regulating the catalytic cycle.
    Liebert K; Horton JR; Chahar S; Orwick M; Cheng X; Jeltsch A
    J Biol Chem; 2007 Aug; 282(31):22848-55. PubMed ID: 17545164
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Symmetry elements in DNA structure important for recognition/methylation by DNA [amino]-methyltransferases.
    Zinoviev VV; Yakishchik SI; Evdokimov AA; Malygin EG; Hattman S
    Nucleic Acids Res; 2004; 32(13):3930-4. PubMed ID: 15280508
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Purification and biochemical characterization of the EcaI DNA methyltransferase.
    Szilák L; Venetianer P; Kiss A
    Eur J Biochem; 1992 Oct; 209(1):391-7. PubMed ID: 1396713
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Substrate binding in vitro and kinetics of RsrI [N6-adenine] DNA methyltransferase.
    Szegedi SS; Reich NO; Gumport RI
    Nucleic Acids Res; 2000 Oct; 28(20):3962-71. PubMed ID: 11024176
    [TBL] [Abstract][Full Text] [Related]  

  • 40. How does a DNA interacting enzyme change its specificity during molecular evolution? A site-directed mutagenesis study at the DNA binding site of the DNA-(adenine-N6)-methyltransferase EcoRV.
    Beck C; Cranz S; Solmaz M; Roth M; Jeltsch A
    Biochemistry; 2001 Sep; 40(37):10956-65. PubMed ID: 11551190
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.