BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 15883030)

  • 41. Molecular evolution of the RNA polymerase II CTD.
    Chapman RD; Heidemann M; Hintermair C; Eick D
    Trends Genet; 2008 Jun; 24(6):289-96. PubMed ID: 18472177
    [TBL] [Abstract][Full Text] [Related]  

  • 42. AtCyp59 is a multidomain cyclophilin from Arabidopsis thaliana that interacts with SR proteins and the C-terminal domain of the RNA polymerase II.
    Gullerova M; Barta A; Lorkovic ZJ
    RNA; 2006 Apr; 12(4):631-43. PubMed ID: 16497658
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Role of C-terminal domain phosphorylation in RNA polymerase II transcription through the nucleosome.
    Liu YV; Clark DJ; Tchernajenko V; Dahmus ME; Studitsky VM
    Biopolymers; 2003 Apr; 68(4):528-38. PubMed ID: 12666177
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A sds22 homolog that is associated with the testis-specific serine/threonine protein phosphatase 1gamma2 in rat testis.
    Chun YS; Park JW; Kim GT; Shima H; Nagao M; Kim MS; Chung MH
    Biochem Biophys Res Commun; 2000 Jul; 273(3):972-6. PubMed ID: 10891357
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Heat shock of HeLa cells inactivates a nuclear protein phosphatase specific for dephosphorylation of the C-terminal domain of RNA polymerase II.
    Dubois MF; Marshall NF; Nguyen VT; Dahmus GK; Bonnet F; Dahmus ME; Bensaude O
    Nucleic Acids Res; 1999 Mar; 27(5):1338-44. PubMed ID: 9973623
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Purification and characterization of a phosphatase from HeLa cells which dephosphorylates the C-terminal domain of RNA polymerase II.
    Chambers RS; Dahmus ME
    J Biol Chem; 1994 Oct; 269(42):26243-8. PubMed ID: 7929341
    [TBL] [Abstract][Full Text] [Related]  

  • 47. CTD phosphatase: role in RNA polymerase II cycling and the regulation of transcript elongation.
    Lin PS; Marshall NF; Dahmus ME
    Prog Nucleic Acid Res Mol Biol; 2002; 72():333-65. PubMed ID: 12206456
    [TBL] [Abstract][Full Text] [Related]  

  • 48. protein phosphatase 2A regulatory subunits. cDNA cloning and analysis of mRNA expression.
    Zaucha JA; Westphal RS; Wadzinski BE
    Methods Mol Biol; 1998; 93():279-91. PubMed ID: 9664545
    [No Abstract]   [Full Text] [Related]  

  • 49. The C-terminal domain phosphatase and transcription elongation activities of FCP1 are regulated by phosphorylation.
    Friedl EM; Lane WS; Erdjument-Bromage H; Tempst P; Reinberg D
    Proc Natl Acad Sci U S A; 2003 Mar; 100(5):2328-33. PubMed ID: 12591939
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Regulation of carboxyl-terminal domain phosphatase by HIV-1 tat protein.
    Marshall NF; Dahmus GK; Dahmus ME
    J Biol Chem; 1998 Nov; 273(48):31726-30. PubMed ID: 9822634
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Multiple mechanisms confining RNA polymerase II ubiquitylation to polymerases undergoing transcriptional arrest.
    Somesh BP; Reid J; Liu WF; Søgaard TM; Erdjument-Bromage H; Tempst P; Svejstrup JQ
    Cell; 2005 Jun; 121(6):913-23. PubMed ID: 15960978
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ssu72 is a phosphatase essential for transcription termination of snoRNAs and specific mRNAs in yeast.
    Ganem C; Devaux F; Torchet C; Jacq C; Quevillon-Cheruel S; Labesse G; Facca C; Faye G
    EMBO J; 2003 Apr; 22(7):1588-98. PubMed ID: 12660165
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [C-terminal domain (CTD) of the subunit Rpb1 of nuclear RNA polymerase II and its role in the transcription cycle].
    Sobennikova MV; Shematorova EK; Shpakovskiĭ GV
    Mol Biol (Mosk); 2007; 41(3):433-49. PubMed ID: 17685222
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Phosphorylation of the C-terminal domain of RNA polymerase II plays central roles in the integrated events of eucaryotic gene expression.
    Hirose Y; Ohkuma Y
    J Biochem; 2007 May; 141(5):601-8. PubMed ID: 17405796
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Structurally conserved and functionally divergent yeast Ssu72 phosphatases.
    Rodríguez-Torres AM; Lamas-Maceiras M; García-Díaz R; Freire-Picos MA
    FEBS Lett; 2013 Aug; 587(16):2617-22. PubMed ID: 23831060
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A novel SR-related protein specifically interacts with the carboxy-terminal domain (CTD) of RNA polymerase II through a conserved interaction domain.
    Tanner S; Stagljar I; Georgiev O; Schaffner W; Bourquin JP
    Biol Chem; 1997 Jun; 378(6):565-71. PubMed ID: 9224939
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A common structural scaffold in CTD phosphatases that supports distinct catalytic mechanisms.
    Pons T; Paramonov I; Boullosa C; Ibáñez K; Rojas AM; Valencia A
    Proteins; 2014 Jan; 82(1):103-18. PubMed ID: 23900790
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Molecular cloning, characterization and expression of a novel serine proteinase inhibitor gene in bay scallops (Argopecten irradians, Lamarck 1819).
    Zhu L; Song L; Chang Y; Xu W; Wu L
    Fish Shellfish Immunol; 2006 Mar; 20(3):320-31. PubMed ID: 16005644
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Cloning and characterization of a novel human SPRYD4 gene encoding a putative SPRY domain-containing protein.
    Zhong Z; Zhang H; Bai M; Ni J; Wan B; Chen X; Yu L
    DNA Seq; 2008 Feb; 19(1):68-72. PubMed ID: 17852359
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Molecular cloning and expression of a Toll receptor gene homologue from Zhikong Scallop, Chlamys farreri.
    Qiu L; Song L; Xu W; Ni D; Yu Y
    Fish Shellfish Immunol; 2007 May; 22(5):451-66. PubMed ID: 17158063
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.