These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 15883365)

  • 1. Prefrontal cortex and flexible cognitive control: rules without symbols.
    Rougier NP; Noelle DC; Braver TS; Cohen JD; O'Reilly RC
    Proc Natl Acad Sci U S A; 2005 May; 102(20):7338-43. PubMed ID: 15883365
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A computational approach to prefrontal cortex, cognitive control and schizophrenia: recent developments and current challenges.
    Cohen JD; Braver TS; O'Reilly RC
    Philos Trans R Soc Lond B Biol Sci; 1996 Oct; 351(1346):1515-27. PubMed ID: 8941963
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neuromodulation of Prefrontal Cortex in Non-Human Primates by Dopaminergic Receptors during Rule-Guided Flexible Behavior and Cognitive Control.
    Vijayraghavan S; Major AJ; Everling S
    Front Neural Circuits; 2017; 11():91. PubMed ID: 29259545
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reward-dependent learning in neuronal networks for planning and decision making.
    Dehaene S; Changeux JP
    Prog Brain Res; 2000; 126():217-29. PubMed ID: 11105649
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prefrontal cortex and dynamic categorization tasks: representational organization and neuromodulatory control.
    O'Reilly RC; Noelle DC; Braver TS; Cohen JD
    Cereb Cortex; 2002 Mar; 12(3):246-57. PubMed ID: 11839599
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Category representation and generalization in the prefrontal cortex.
    Pan X; Sakagami M
    Eur J Neurosci; 2012 Apr; 35(7):1083-91. PubMed ID: 22487038
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural evidence for dissociable components of task-switching.
    Crone EA; Wendelken C; Donohue SE; Bunge SA
    Cereb Cortex; 2006 Apr; 16(4):475-86. PubMed ID: 16000652
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A large-scale neurocomputational model of task-oriented behavior selection and working memory in prefrontal cortex.
    Chadderdon GL; Sporns O
    J Cogn Neurosci; 2006 Feb; 18(2):242-57. PubMed ID: 16494684
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-organizing high-order cognitive functions in artificial agents: implications for possible prefrontal cortex mechanisms.
    Maniadakis M; Trahanias P; Tani J
    Neural Netw; 2012 Sep; 33():76-87. PubMed ID: 22609533
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hebbian Learning in a Random Network Captures Selectivity Properties of the Prefrontal Cortex.
    Lindsay GW; Rigotti M; Warden MR; Miller EK; Fusi S
    J Neurosci; 2017 Nov; 37(45):11021-11036. PubMed ID: 28986463
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rostro-caudal and dorso-ventral gradients in medial and lateral prefrontal cortex during cognitive control of affective and cognitive interference.
    Rahm C; Liberg B; Wiberg-Kristoffersen M; Aspelin P; Msghina M
    Scand J Psychol; 2013 Apr; 54(2):66-71. PubMed ID: 23316801
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fronto-striatal contribution to lexical set-shifting.
    Simard F; Joanette Y; Petrides M; Jubault T; Madjar C; Monchi O
    Cereb Cortex; 2011 May; 21(5):1084-93. PubMed ID: 20864602
    [TBL] [Abstract][Full Text] [Related]  

  • 13. More than a matter of getting 'unstuck': flexible thinkers use more abstract representations than perseverators.
    Kharitonova M; Chien S; Colunga E; Munakata Y
    Dev Sci; 2009 Jul; 12(4):662-9. PubMed ID: 19635091
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The hemodynamics of cognitive control: the level of concentration of oxygenated hemoglobin in the superior prefrontal cortex varies as a function of performance in a modified Stroop task.
    León-Carrion J; Damas-López J; Martín-Rodríguez JF; Domínguez-Roldán JM; Murillo-Cabezas F; Barroso Y Martin JM; Domínguez-Morales MR
    Behav Brain Res; 2008 Nov; 193(2):248-56. PubMed ID: 18606191
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A computational approach to control in complex cognition.
    Polk TA; Simen P; Lewis RL; Freedman E
    Brain Res Cogn Brain Res; 2002 Dec; 15(1):71-83. PubMed ID: 12433383
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional specialization within macaque dorsolateral prefrontal cortex for the maintenance of task rules and cognitive control.
    Hussein S; Johnston K; Belbeck B; Lomber SG; Everling S
    J Cogn Neurosci; 2014 Sep; 26(9):1918-27. PubMed ID: 24666129
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Levels of integration in cognitive control and sequence processing in the prefrontal cortex.
    Bahlmann J; Korb FM; Gratton C; Friederici AD
    PLoS One; 2012; 7(8):e43774. PubMed ID: 22952762
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A computational model of prefrontal control in free recall: strategic memory use in the California Verbal Learning Task.
    Becker S; Lim J
    J Cogn Neurosci; 2003 Aug; 15(6):821-32. PubMed ID: 14511535
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of abstract rules in the prefrontal cortex, premotor cortex, inferior temporal cortex, and striatum.
    Muhammad R; Wallis JD; Miller EK
    J Cogn Neurosci; 2006 Jun; 18(6):974-89. PubMed ID: 16839304
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for reduced efficiency and successful compensation in older adults during task switching.
    Hakun JG; Zhu Z; Johnson NF; Gold BT
    Cortex; 2015 Mar; 64():352-62. PubMed ID: 25614233
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.