These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 15883368)

  • 1. Predicted highly expressed genes in archaeal genomes.
    Karlin S; Mrázek J; Ma J; Brocchieri L
    Proc Natl Acad Sci U S A; 2005 May; 102(20):7303-8. PubMed ID: 15883368
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicted highly expressed genes of diverse prokaryotic genomes.
    Karlin S; Mrázek J
    J Bacteriol; 2000 Sep; 182(18):5238-50. PubMed ID: 10960111
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chaperones and protein folding in the archaea.
    Large AT; Goldberg MD; Lund PA
    Biochem Soc Trans; 2009 Feb; 37(Pt 1):46-51. PubMed ID: 19143600
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stress genes and proteins in the archaea.
    Macario AJ; Lange M; Ahring BK; Conway de Macario E
    Microbiol Mol Biol Rev; 1999 Dec; 63(4):923-67, table of contents. PubMed ID: 10585970
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genomic and proteomic comparisons between bacterial and archaeal genomes and related comparisons with the yeast and fly genomes.
    Karlin S; Brocchieri L; Campbell A; Cyert M; Mrázek J
    Proc Natl Acad Sci U S A; 2005 May; 102(20):7309-14. PubMed ID: 15883367
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of archaeal and bacterial genomes: computer analysis of protein sequences predicts novel functions and suggests a chimeric origin for the archaea.
    Koonin EV; Mushegian AR; Galperin MY; Walker DR
    Mol Microbiol; 1997 Aug; 25(4):619-37. PubMed ID: 9379893
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative analysis of codon usage bias in Crenarchaea and Euryarchaea genome reveals differential preference of synonymous codons to encode highly expressed ribosomal and RNA polymerase proteins.
    Baruah VJ; Satapathy SS; Powdel BR; Konwarh R; Buragohain AK; Ray SK
    J Genet; 2016 Sep; 95(3):537-49. PubMed ID: 27659324
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deciphering the functional diversity of DNA-binding transcription factors in Bacteria and Archaea organisms.
    Flores-Bautista E; Hernandez-Guerrero R; Huerta-Saquero A; Tenorio-Salgado S; Rivera-Gomez N; Romero A; Ibarra JA; Perez-Rueda E
    PLoS One; 2020; 15(8):e0237135. PubMed ID: 32822422
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly expressed and alien genes of the Synechocystis genome.
    Mrázek J; Bhaya D; Grossman AR; Karlin S
    Nucleic Acids Res; 2001 Apr; 29(7):1590-601. PubMed ID: 11266562
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control of ribosomal protein L1 synthesis in mesophilic and thermophilic archaea.
    Kraft A; Lutz C; Lingenhel A; Gröbner P; Piendl W
    Genetics; 1999 Aug; 152(4):1363-72. PubMed ID: 10430567
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distinct gene set in two different lineages of ammonia-oxidizing archaea supports the phylum Thaumarchaeota.
    Spang A; Hatzenpichler R; Brochier-Armanet C; Rattei T; Tischler P; Spieck E; Streit W; Stahl DA; Wagner M; Schleper C
    Trends Microbiol; 2010 Aug; 18(8):331-40. PubMed ID: 20598889
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recurrent paralogy in the evolution of archaeal chaperonins.
    Archibald JM; Logsdon JM; Doolittle WF
    Curr Biol; 1999 Sep; 9(18):1053-6. PubMed ID: 10508614
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The archaeal molecular chaperone machine: peculiarities and paradoxes.
    Macario AJ; Conway de Macario E
    Genetics; 1999 Aug; 152(4):1277-83. PubMed ID: 10430558
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insights into chaperonin function from studies on archaeal thermosomes.
    Lund P
    Biochem Soc Trans; 2011 Jan; 39(1):94-8. PubMed ID: 21265753
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetics and binding sites for interaction of the prefoldin with a group II chaperonin: contiguous non-native substrate and chaperonin binding sites in the archaeal prefoldin.
    Okochi M; Nomura T; Zako T; Arakawa T; Iizuka R; Ueda H; Funatsu T; Leroux M; Yohda M
    J Biol Chem; 2004 Jul; 279(30):31788-95. PubMed ID: 15145959
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The thermosome: archetype of group II chaperonins.
    Klumpp M; Baumeister W
    FEBS Lett; 1998 Jun; 430(1-2):73-7. PubMed ID: 9678597
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chromosome replication, nucleoid segregation and cell division in archaea.
    Bernander R
    Trends Microbiol; 2000 Jun; 8(6):278-83. PubMed ID: 10838586
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cooperativity in the thermosome.
    Bigotti MG; Clarke AR
    J Mol Biol; 2005 Apr; 348(1):13-26. PubMed ID: 15808850
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Divergent transcriptional and translational signals in Archaea.
    Torarinsson E; Klenk HP; Garrett RA
    Environ Microbiol; 2005 Jan; 7(1):47-54. PubMed ID: 15643935
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative genomics of DNA-binding transcription factors in archaeal and bacterial organisms.
    Martinez-Liu L; Hernandez-Guerrero R; Rivera-Gomez N; Martinez-Nuñez MA; Escobar-Turriza P; Peeters E; Perez-Rueda E
    PLoS One; 2021; 16(7):e0254025. PubMed ID: 34214112
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.