These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 15883863)

  • 1. Cyanobacteria and biodeterioration of cultural heritage: a review.
    Crispim CA; Gaylarde CC
    Microb Ecol; 2005 Jan; 49(1):1-9. PubMed ID: 15883863
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cyanobacteria-containing biofilms from a Mayan monument in Palenque, Mexico.
    Ramirez M; Hernandez-Marine M; Novelo E; Roldan M
    Biofouling; 2010 May; 26(4):399-409. PubMed ID: 20182932
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Algal and cyanobacterial biofilms on calcareous historic buildings.
    Crispim CA; Gaylarde PM; Gaylarde CC
    Curr Microbiol; 2003 Feb; 46(2):79-82. PubMed ID: 12520359
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microbial deterioration of stone monuments--an updated overview.
    Scheerer S; Ortega-Morales O; Gaylarde C
    Adv Appl Microbiol; 2009; 66():97-139. PubMed ID: 19203650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diversity of an aerial phototrophic coating of historic buildings in the former Auschwitz II-Birkenau concentration camp.
    Nowicka-Krawczyk P; Żelazna-Wieczorek J; Otlewska A; Koziróg A; Rajkowska K; Piotrowska M; Gutarowska B; Żydzik-Białek A
    Sci Total Environ; 2014 Sep; 493():116-23. PubMed ID: 24937497
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Subaerial biofilms on granitic historic buildings: microbial diversity and development of phototrophic multi-species cultures.
    Vázquez-Nion D; Rodríguez-Castro J; López-Rodríguez MC; Fernández-Silva I; Prieto B
    Biofouling; 2016 Jul; 32(6):657-69. PubMed ID: 27192622
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbial Biodeterioration of Cultural Heritage: Events, Colonization, and Analyses.
    Negi A; Sarethy IP
    Microb Ecol; 2019 Nov; 78(4):1014-1029. PubMed ID: 31025063
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbial Diversity on the Surface of Historical Monuments in Lingyan Temple, Jinan, China.
    Li T; Cai Y; Ma Q
    Microb Ecol; 2023 Jan; 85(1):76-86. PubMed ID: 34997309
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cyanobacterial diversity and ecology on historic monuments in Latin America.
    Ortega-Morales BO
    Rev Latinoam Microbiol; 2006; 48(2):188-95. PubMed ID: 17578091
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Does green light influence the fluorescence properties and structure of phototrophic biofilms?
    Roldán M; Oliva F; Gónzalez del Valle MA; Saiz-Jimenez C; Hernández-Mariné M
    Appl Environ Microbiol; 2006 Apr; 72(4):3026-31. PubMed ID: 16598012
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heterotrophic pioneers facilitate phototrophic biofilm development.
    Roeselers G; van Loosdrecht MC; Muyzer G
    Microb Ecol; 2007 Oct; 54(3):578-85. PubMed ID: 17370028
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolomic and high-throughput sequencing analysis-modern approach for the assessment of biodeterioration of materials from historic buildings.
    Gutarowska B; Celikkol-Aydin S; Bonifay V; Otlewska A; Aydin E; Oldham AL; Brauer JI; Duncan KE; Adamiak J; Sunner JA; Beech IB
    Front Microbiol; 2015; 6():979. PubMed ID: 26483760
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polyphasic detection of cyanobacteria in terrestrial biofilms.
    Gaylarde C; Gaylarde P; Copp J; Neilan B
    Biofouling; 2004 Apr; 20(2):71-9. PubMed ID: 15203960
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial dominance and inorganic carbon assimilation by conspicuous autotrophic biofilms in a physical and chemical gradient of a cold sulfurous spring: the role of differential ecological strategies.
    Camacho A; Rochera C; Silvestre JJ; Vicente E; Hahn MW
    Microb Ecol; 2005 Aug; 50(2):172-84. PubMed ID: 16211325
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Innovative approaches for the processes involved in microbial biodeterioration of cultural heritage materials.
    Liu X; Qian Y; Wang Y; Wu F; Wang W; Gu JD
    Curr Opin Biotechnol; 2022 Jun; 75():102716. PubMed ID: 35429728
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Autofluorescence for the Visualization of Microorganisms in Biodeteriorated Materials in the Context of Cultural Heritage.
    Stratigaki M
    Chempluschem; 2024 Nov; 89(11):e202400170. PubMed ID: 39222337
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Melding the Old with the New: Trends in Methods Used to Identify, Monitor, and Control Microorganisms on Cultural Heritage Materials.
    Sanmartín P; DeAraujo A; Vasanthakumar A
    Microb Ecol; 2018 Jul; 76(1):64-80. PubMed ID: 27117796
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biofilm quantification on stone surfaces: comparison of various methods.
    Prieto B; Silva B; Lantes O
    Sci Total Environ; 2004 Oct; 333(1-3):1-7. PubMed ID: 15364515
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biogenic black crusts on buildings in unpolluted environments.
    Gaylarde CC; Ortega-Morales BO; Bartolo-Pérez P
    Curr Microbiol; 2007 Feb; 54(2):162-6. PubMed ID: 17211538
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photoinhibition of cyanobacteria and its application in cultural heritage conservation.
    Hsieh P; Pedersen JZ; Bruno L
    Photochem Photobiol; 2014; 90(3):533-43. PubMed ID: 24320697
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.