These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 15884173)
21. Partial optimization of electrochemical-etching parameters for highly sensitive CR-39 fast neutron dosimeters. Gammage RB; Chowdhury A Health Phys; 1982 Aug; 43(2):225-9. PubMed ID: 7129877 [TBL] [Abstract][Full Text] [Related]
22. Energy spectrum of iron nuclei measured inside the MIR space craft using CR-39 track detectors. Gunther W; Leugner D; Becker E; Flesch F; Heinrich W; Huntrup G; Reitz G; Rocher H; Streibel T Radiat Meas; 1999 Jun; 31(1-6):585-90. PubMed ID: 12025843 [TBL] [Abstract][Full Text] [Related]
23. Influence of variation of etching conditions on the sensitivity of PADC detectors with a new evaluation method. Fiechtner-Scharrer A; Mayer S; Boschung M; Whitelaw A Radiat Prot Dosimetry; 2011 Mar; 144(1-4):150-4. PubMed ID: 21212078 [TBL] [Abstract][Full Text] [Related]
24. Cosmic ray radiation effects caused by proton-induced fragmentation. Heinrich W; Streibel T; Ahrendt M; Rocher H; Huntrup G Radiat Meas; 1997; 28(1-6):537-42. PubMed ID: 11541798 [TBL] [Abstract][Full Text] [Related]
25. Characterization of alpha-particle tracks in cellulose nitrate LR-115 detectors at various incident energies and angles. Mheemeed AK; Hussein AKh; Kheder RB Appl Radiat Isot; 2013 Sep; 79():48-55. PubMed ID: 23727556 [TBL] [Abstract][Full Text] [Related]
26. STUDYING THE STRUCTURAL, OPTICAL, CHEMICAL AND ELECTROCHEMICAL ETCHING CHANGES OF CR-39 FOR DOSEMETRIC APPLICATIONS. Zaki MF; Elshaer YH; Taha DH Radiat Prot Dosimetry; 2017 Dec; 177(3):272-279. PubMed ID: 28398558 [TBL] [Abstract][Full Text] [Related]
27. The impact of the broad range of gamma doses on follow-up fission fragment track parameters in CR-39 radiation detector. Othman SM; El-Mesady IA; El-Badawy AS; Ghanim EH Appl Radiat Isot; 2024 Jun; 208():111253. PubMed ID: 38493564 [TBL] [Abstract][Full Text] [Related]
28. Development of an alpha/beta/gamma detector for radiation monitoring. Yamamoto S; Hatazawa J Rev Sci Instrum; 2011 Nov; 82(11):113503. PubMed ID: 22128972 [TBL] [Abstract][Full Text] [Related]
29. Alpha and fission fragment autoradiography with superimposed tissue images in CR-39 plastic. Gore DJ; Jenner TJ Phys Med Biol; 1980 Nov; 25(6):1095-1104. PubMed ID: 7208622 [TBL] [Abstract][Full Text] [Related]
30. Eyeglass lenses for personal radon dosimetry. Hadley SA; Meyer NR; Fleischer RL; Cavallo A Health Phys; 2000 Sep; 79(3):242-50. PubMed ID: 10949248 [TBL] [Abstract][Full Text] [Related]
31. HIGH DOSE FAST NEUTRON DOSIMETRY USING PADC PLASTIC NUCLEAR TRACK DETECTORS AND GREY LEVEL ANALYSIS. Stabilini A; Meier K; Yukihara EG Radiat Prot Dosimetry; 2018 Aug; 180(1-4):220-224. PubMed ID: 29036689 [TBL] [Abstract][Full Text] [Related]
32. The angular dependence of an Si energy deposition spectrometer response at several radiation sources. Spurný F; Trompier F; Bottollier-Depois JF Radiat Meas; 2005 Jun; 39(3):323-7. PubMed ID: 15884172 [TBL] [Abstract][Full Text] [Related]
33. A new method of imaging particle tracks in solid state nuclear track detectors. Wertheim D; Gillmore G; Brown L; Petford N J Microsc; 2010 Jan; 237(1):1-6. PubMed ID: 20055913 [TBL] [Abstract][Full Text] [Related]
34. Environmental neutron measurements around nuclear facilities with moderated-type neutron detector. Nakamura T; Kosako T; Iwai S Health Phys; 1984 Nov; 47(5):729-43. PubMed ID: 6511417 [TBL] [Abstract][Full Text] [Related]
35. A study of the radiobiological effectiveness with track etch detectors. Waheed A; Manzoor S; Moschini G; Cherubini R; Popa V; Giacomelli G Radiat Meas; 1997; 28(1-6):463-6. PubMed ID: 11541795 [TBL] [Abstract][Full Text] [Related]
36. Relative performance of different types of passive dosimeters employing solid state nuclear track detectors. Jamil K; Al-Ahmady KK; Fazal-ur-Rehman ; Ali S; Qureshi AA; Khan HA Health Phys; 1997 Oct; 73(4):629-32. PubMed ID: 9314222 [TBL] [Abstract][Full Text] [Related]
37. Development of an energy discriminate CR-39(®) nuclear track etch dosimeter for Radon-220 gas measurements. Brown JM; Solomon S; Tinker RA J Environ Radioact; 2011 Oct; 102(10):901-5. PubMed ID: 20980083 [TBL] [Abstract][Full Text] [Related]
38. Measurement of LET distribution and dose equivalent on board the space shuttle STS-65. Hayashi T; Doke T; Kikuchi J; Takeuchi R; Hasebe N; Ogura K; Nagaoka S; Kato M; Badhwar GD Radiat Meas; 1996 Nov; 26(6):935-45. PubMed ID: 11540526 [TBL] [Abstract][Full Text] [Related]
39. A method to account for track overlap in CR-39 detectors. Franci D; Aureli T Radiat Prot Dosimetry; 2014 Jan; 158(1):107-10. PubMed ID: 23918743 [TBL] [Abstract][Full Text] [Related]
40. CONTRIBUTION OF DIFFERENT PARTICLES MEASURED WITH TRACK ETCHED DETECTORS ONBOARD ISS. Ambrožová I; Davídková M; Brabcová KP; Tolochek RV; Shurshakov VA Radiat Prot Dosimetry; 2018 Aug; 180(1-4):138-141. PubMed ID: 29036726 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]