BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

314 related articles for article (PubMed ID: 15884380)

  • 1. Formation of soluble organo-chromium(III) complexes after chromate reduction in the presence of cellular organics.
    Puzon GJ; Roberts AG; Kramer DM; Xun L
    Environ Sci Technol; 2005 Apr; 39(8):2811-7. PubMed ID: 15884380
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chromium(VI) bioremoval by Pseudomonas bacteria: role of microbial exudates for natural attenuation and biotreatment of Cr(VI) contamination.
    Dogan NM; Kantar C; Gulcan S; Dodge CJ; Yilmaz BC; Mazmanci MA
    Environ Sci Technol; 2011 Mar; 45(6):2278-85. PubMed ID: 21319733
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mobility and recalcitrance of organo-chromium(III) complexes.
    Puzon GJ; Tokala RK; Zhang H; Yonge D; Peyton BM; Xun L
    Chemosphere; 2008 Feb; 70(11):2054-9. PubMed ID: 17959226
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A bacterial flavin reductase system reduces chromate to a soluble chromium(III)-NAD(+) complex.
    Puzon GJ; Petersen JN; Roberts AG; Kramer DM; Xun L
    Biochem Biophys Res Commun; 2002 May; 294(1):76-81. PubMed ID: 12054743
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intracellular versus extracellular accumulation of Hexavalent chromium reduction products by Geobacter sulfurreducens PCA.
    Gong Y; Werth CJ; He Y; Su Y; Zhang Y; Zhou X
    Environ Pollut; 2018 Sep; 240():485-492. PubMed ID: 29754098
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation and characterization of an NAD+-degrading bacterium PTX1 and its role in chromium biogeochemical cycle.
    Puzon GJ; Huang Y; Dohnalkova A; Xun L
    Biodegradation; 2008 Jun; 19(3):417-24. PubMed ID: 17701280
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation and characterization of a chromium-resistant bacterium Serratia sp. Cr-10 from a chromate-contaminated site.
    Zhang K; Li F
    Appl Microbiol Biotechnol; 2011 May; 90(3):1163-9. PubMed ID: 21318365
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hexavalent chromium removal in vitro and from industrial wastes, using chromate-resistant strains of filamentous fungi indigenous to contaminated wastes.
    Acevedo-Aguilar FJ; Espino-Saldaña AE; Leon-Rodriguez IL; Rivera-Cano ME; Avila-Rodriguez M; Wrobel K; Wrobel K; Lappe P; Ulloa M; Gutiérrez-Corona JF
    Can J Microbiol; 2006 Sep; 52(9):809-15. PubMed ID: 17110972
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chromium-microorganism interactions in soils: remediation implications.
    Kamaludeen SP; Megharaj M; Juhasz AL; Sethunathan N; Naidu R
    Rev Environ Contam Toxicol; 2003; 178():93-164. PubMed ID: 12868782
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of Cr(VI)-resistant bacteria isolated from chromium-contaminated soil by tannery activity.
    Viti C; Pace A; Giovannetti L
    Curr Microbiol; 2003 Jan; 46(1):1-5. PubMed ID: 12432455
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro reduction of hexavalent chromium by a cell-free extract of Bacillus sp. ES 29 stimulated by Cu2+.
    Camargo FA; Okeke BC; Bento FM; Frankenberger WT
    Appl Microbiol Biotechnol; 2003 Oct; 62(5-6):569-73. PubMed ID: 12679851
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reduction of chromium(VI) by ascorbate leads to chromium-DNA binding and DNA strand breaks in vitro.
    Stearns DM; Kennedy LJ; Courtney KD; Giangrande PH; Phieffer LS; Wetterhahn KE
    Biochemistry; 1995 Jan; 34(3):910-9. PubMed ID: 7827049
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chromate reduction by a pseudomonad isolated from a site contaminated with chromated copper arsenate.
    McLean J; Beveridge TJ
    Appl Environ Microbiol; 2001 Mar; 67(3):1076-84. PubMed ID: 11229894
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microbial reduction of hexavalent chromium under vadose zone conditions.
    Oliver DS; Brockman FJ; Bowman RS; Kieft TL
    J Environ Qual; 2003; 32(1):317-24. PubMed ID: 12549572
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation mechanism of organo-chromium (III) complexes from bioreduction of chromium (VI) by Aeromonas hydrophila.
    Huang XN; Min D; Liu DF; Cheng L; Qian C; Li WW; Yu HQ
    Environ Int; 2019 Aug; 129():86-94. PubMed ID: 31121519
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation of hexavalent chromium-reducing anaerobes from hexavalent-chromium-contaminated and noncontaminated environments.
    Turick CE; Apel WA; Carmiol NS
    Appl Microbiol Biotechnol; 1996 Jan; 44(5):683-8. PubMed ID: 8703437
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of biochar and black carbon on reduction and bioavailability of chromate in soils.
    Choppala GK; Bolan NS; Megharaj M; Chen Z; Naidu R
    J Environ Qual; 2012; 41(4):1175-84. PubMed ID: 22751060
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation on mechanism of Cr(VI) reduction and removal by Bacillus amyloliquefaciens, a novel chromate tolerant bacterium isolated from chromite mine soil.
    Das S; Mishra J; Das SK; Pandey S; Rao DS; Chakraborty A; Sudarshan M; Das N; Thatoi H
    Chemosphere; 2014 Feb; 96():112-21. PubMed ID: 24091247
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reduction and precipitation of chromate by mixed culture sulphate-reducing bacterial biofilms.
    Smith WL; Gadd GM
    J Appl Microbiol; 2000 Jun; 88(6):983-91. PubMed ID: 10849174
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bacterial chromate reductase, a potential enzyme for bioremediation of hexavalent chromium: a review.
    Thatoi H; Das S; Mishra J; Rath BP; Das N
    J Environ Manage; 2014 Dec; 146():383-399. PubMed ID: 25199606
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.