These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 15884390)

  • 1. Laboratory study of treatment of trichloroethene by chemical oxidation followed by bioremediation.
    Hrapovic L; Sleep BE; Major DJ; Hood ED
    Environ Sci Technol; 2005 Apr; 39(8):2888-97. PubMed ID: 15884390
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of emulsified vegetable oil to support bioremediation of TCE DNAPL in soil columns.
    Harkness M; Fisher A
    J Contam Hydrol; 2013 Aug; 151():16-33. PubMed ID: 23697993
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Further biogeochemical characterization of a trichloroethene-contaminated fractured dolomite aquifer: electron source and microbial communities involved in reductive dechlorination.
    Hohnstock-Ashe AM; Plummer SM; Yager RM; Baveye P; Madsen EL
    Environ Sci Technol; 2001 Nov; 35(22):4449-56. PubMed ID: 11757600
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microcosm evaluation of bioaugmentation after field-scale thermal treatment of a TCE-contaminated aquifer.
    Friis AK; Kofoed JL; Heron G; Albrechtsen HJ; Bjerg PL
    Biodegradation; 2007 Dec; 18(6):661-74. PubMed ID: 17225076
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of KMnO(4)-releasing composites for in situ chemical oxidation of TCE-contaminated groundwater.
    Liang SH; Chen KF; Wu CS; Lin YH; Kao CM
    Water Res; 2014 May; 54():149-58. PubMed ID: 24568784
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of natural or enhanced in situ bioremediation at a chlorinated solvent-contaminated aquifer in Italy: a microcosm study.
    Aulenta F; Bianchi A; Majone M; Petrangeli Papini M; Potalivo M; Tandoi V
    Environ Int; 2005 Feb; 31(2):185-90. PubMed ID: 15661281
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dehalococcoides abundance and alternate electron acceptor effects on large, flow-through trichloroethene dechlorinating columns.
    Mirza BS; Sorensen DL; Dupont RR; McLean JE
    Appl Microbiol Biotechnol; 2016 Mar; 100(5):2367-79. PubMed ID: 26536878
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inoculation of a DNAPL source zone to initiate reductive dechlorination of PCE.
    Adamson DT; McDade JM; Hughes JB
    Environ Sci Technol; 2003 Jun; 37(11):2525-33. PubMed ID: 12831039
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unintentional contaminant transfer from groundwater to the vadose zone during source zone remediation of volatile organic compounds.
    Chong AD; Mayer KU
    J Contam Hydrol; 2017 Sep; 204():1-10. PubMed ID: 28830695
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Decoupling Fe
    Mohana Rangan S; Rao S; Robles A; Mouti A; LaPat-Polasko L; Lowry GV; Krajmalnik-Brown R; Delgado AG
    Environ Sci Technol; 2023 Mar; 57(10):4167-4179. PubMed ID: 36866930
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dehalococcoides and general bacterial ecology of differentially trichloroethene dechlorinating flow-through columns.
    Mirza BS; Sorensen DL; McGlinn DJ; Dupont RR; McLean JE
    Appl Microbiol Biotechnol; 2017 Jun; 101(11):4799-4813. PubMed ID: 28213734
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 1,1-dichloroethene as a predominant intermediate of microbial trichloroethene reduction.
    Zhang J; Joslyn AP; Chiu PC
    Environ Sci Technol; 2006 Mar; 40(6):1830-6. PubMed ID: 16570604
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chlorine isotope effects from isotope ratio mass spectrometry suggest intramolecular C-Cl bond competition in trichloroethene (TCE) reductive dehalogenation.
    Cretnik S; Bernstein A; Shouakar-Stash O; Löffler F; Elsner M
    Molecules; 2014 May; 19(5):6450-73. PubMed ID: 24853618
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Remediation of TCE-contaminated groundwater using KMnO
    Yang ZH; Ou JH; Dong CD; Chen CW; Lin WH; Kao CM
    Environ Sci Pollut Res Int; 2019 Nov; 26(33):34027-34038. PubMed ID: 30232775
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stable carbon isotope fractionation during enhanced in situ bioremediation of trichloroethene.
    Song DL; Conrad ME; Sorenson KS; Alvarez-Cohen L
    Environ Sci Technol; 2002 May; 36(10):2262-8. PubMed ID: 12038839
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combination of surfactant solubilization with permanganate oxidation for DNAPL remediation.
    Li Z; Hanlie H
    Water Res; 2008 Feb; 42(3):605-14. PubMed ID: 17826816
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stable isotope evidence for biodegradation of chlorinated ethenes at a fractured bedrock site.
    Chartrand MM; Morrill PL; Lacrampe-Couloume G; Lollar BS
    Environ Sci Technol; 2005 Jul; 39(13):4848-56. PubMed ID: 16053083
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The need for bioaugmentation after thermal treatment of a TCE-contaminated aquifer: Laboratory experiments.
    Friis AK; Albrechtsen HJ; Cox E; Bjerg PL
    J Contam Hydrol; 2006 Dec; 88(3-4):235-48. PubMed ID: 17081651
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon isotope fractionation during permanganate oxidation of chlorinated ethylenes (cDCE, TCE, PCE).
    Poulson SR; Naraoka H
    Environ Sci Technol; 2002 Aug; 36(15):3270-4. PubMed ID: 12188352
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The humic acid analogue antraquinone-2,6-disulfonate (AQDS) serves as an electron shuttle in the electricity-driven microbial dechlorination of trichloroethene to cis-dichloroethene.
    Aulenta F; Maio VD; Ferri T; Majone M
    Bioresour Technol; 2010 Dec; 101(24):9728-33. PubMed ID: 20709536
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.