These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 15884539)

  • 1. [Modeling vocal-fold vibration via integrating two-mass model with finite-element method].
    Jiang J; Yu Q; Qiu Q; Xu K
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2005 Apr; 22(2):297-302. PubMed ID: 15884539
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical stress during phonation in a self-oscillating finite-element vocal fold model.
    Tao C; Jiang JJ
    J Biomech; 2007; 40(10):2191-8. PubMed ID: 17187805
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extracting physiologically relevant parameters of vocal folds from high-speed video image series.
    Tao C; Zhang Y; Jiang JJ
    IEEE Trans Biomed Eng; 2007 May; 54(5):794-801. PubMed ID: 17518275
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving reliability and accuracy of vibration parameters of vocal folds based on high-speed video and electroglottography.
    Qin X; Wang S; Wan M
    IEEE Trans Biomed Eng; 2009 Jun; 56(6):1744-54. PubMed ID: 19272979
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Laryngeal paralyses: theoretical considerations and effects on laryngeal vibration.
    Smith ME; Berke GS; Gerratt BR; Kreiman J
    J Speech Hear Res; 1992 Jun; 35(3):545-54. PubMed ID: 1608245
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Asymmetric airflow and vibration induced by the Coanda effect in a symmetric model of the vocal folds.
    Tao C; Zhang Y; Hottinger DG; Jiang JJ
    J Acoust Soc Am; 2007 Oct; 122(4):2270-8. PubMed ID: 17902863
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vibration parameter extraction from endoscopic image series of the vocal folds.
    Döllinger M; Hoppe U; Hettlich F; Lohscheller J; Schuberth S; Eysholdt U
    IEEE Trans Biomed Eng; 2002 Aug; 49(8):773-81. PubMed ID: 12148815
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatio-temporal quantification of vocal fold vibrations using high-speed videoendoscopy and a biomechanical model.
    Schwarz R; Döllinger M; Wurzbacher T; Eysholdt U; Lohscheller J
    J Acoust Soc Am; 2008 May; 123(5):2717-32. PubMed ID: 18529190
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Study on the modeling of the glottic vibration: towards a nonlinear model of type stick and slip].
    Garrel R; Giovanni A; Ouaknine MA
    Rev Laryngol Otol Rhinol (Bord); 2007; 128(5):279-88. PubMed ID: 20387373
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A finite-element model of vocal-fold vibration.
    Alipour F; Berry DA; Titze IR
    J Acoust Soc Am; 2000 Dec; 108(6):3003-12. PubMed ID: 11144592
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vocal fold and ventricular fold vibration in period-doubling phonation: physiological description and aerodynamic modeling.
    Bailly L; Henrich N; Pelorson X
    J Acoust Soc Am; 2010 May; 127(5):3212-22. PubMed ID: 21117769
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An automatic method to quantify the vibration properties of human vocal folds via videokymography.
    Qiu Q; Schutte HK; Gu L; Yu Q
    Folia Phoniatr Logop; 2003; 55(3):128-36. PubMed ID: 12771464
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An asymmetric smooth contour two-mass model for recurrent laryngeal nerve paralysis.
    Dresel C; Mergell P; Hoppe U; Eysholdt U
    Logoped Phoniatr Vocol; 2006; 31(2):61-75. PubMed ID: 16754278
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vowel formants from the wave equation.
    Hannukainen A; Lukkari T; Malinen J; Palo P
    J Acoust Soc Am; 2007 Jul; 122(1):EL1-7. PubMed ID: 17614371
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Corrected contact dynamics for the Steinecke and Herzel asymmetric two-mass model of the vocal folds.
    Sommer DE; Erath BD; Zañartu M; Peterson SD
    J Acoust Soc Am; 2012 Oct; 132(4):EL271-6. PubMed ID: 23039564
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vibratory pattern of vocal folds under tension asymmetry.
    Maunsell R; Ouaknine M; Giovanni A; Crespo A
    Otolaryngol Head Neck Surg; 2006 Sep; 135(3):438-44. PubMed ID: 16949979
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A muscle controlled finite-element model of laryngeal abduction and adduction.
    Gömmel A; Butenweg C; Bolender K; Grunendahl A
    Comput Methods Biomech Biomed Engin; 2007 Oct; 10(5):377-88. PubMed ID: 17891575
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non linear behavior of vocal fold vibration in an experimental model of asymmetric larynx: role of coupling between the two folds.
    Ouaknine M; Giovanni A; Guelfucci B; Teston B; Triglia JM
    Rev Laryngol Otol Rhinol (Bord); 1998; 119(4):249-52. PubMed ID: 9865101
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of a constriction in the near field of the vocal folds: physical modeling and experimental validation.
    Bailly L; Pelorson X; Henrich N; Ruty N
    J Acoust Soc Am; 2008 Nov; 124(5):3296-308. PubMed ID: 19045812
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Videostrobokymography: a new method for the quantitative analysis of vocal fold vibration.
    Sung MW; Kim KH; Koh TY; Kwon TY; Mo JH; Choi SH; Lee JS; Park KS; Kim EJ; Sung MY
    Laryngoscope; 1999 Nov; 109(11):1859-63. PubMed ID: 10569423
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.