These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 158848)

  • 1. The lysis of crosslinked human fibrin by plasmin yields initially a single molecular complex, D dimer-E.
    Gaffney PJ; Joe F
    Thromb Res; 1979; 15(5-6):673-87. PubMed ID: 158848
    [No Abstract]   [Full Text] [Related]  

  • 2. Demonstration of different D-and E-antigenic intermediates during plasmin degradation of non-stabilized and stabilized fibrin clots.
    Gormsen J; Feddersen C
    Scand J Haematol; 1973; 10(5):337-48. PubMed ID: 4272382
    [No Abstract]   [Full Text] [Related]  

  • 3. gamma-dimerization, alpha-polymerization, and plasmin degradation of human fibrin. Effect of various inhibitors of factor XIII on the patterns in SDS-electrophoresis and crossed immunoelectrophoresis.
    Feddersen JC; Gormsen J
    Thromb Haemost; 1976 Aug; 36(1):27-36. PubMed ID: 137555
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Subunit structure of the plasmin-induced degradation products of crosslinked fibrin.
    Gaffney PJ; Brasher M
    Biochim Biophys Acta; 1973 Jan; 295(1):308-13. PubMed ID: 4265363
    [No Abstract]   [Full Text] [Related]  

  • 5. Fibrin subunits in venous and arterial thromboembolism.
    Gaffney PJ; Brasher M; Lord K; Strachan CJ; Wilkinson AR; Kakkar VV; Scully MF
    Cardiovasc Res; 1976 Jul; 10(4):421-6. PubMed ID: 133759
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Soluble high-molecular-weight E fragments in the plasmin-induced degradation products of cross-linked human fibrin.
    Gaffney PJ; Lane DA; Brasher M
    Clin Sci Mol Med; 1975 Aug; 49(2):149-56. PubMed ID: 125178
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complex-formation between the fibrin-derived plasmic fragments DD and E demonstrated by crossed immunoelectrophoresis.
    Gogstad GO; Brosstad F
    Thromb Res; 1983 Jun; 30(5):441-8. PubMed ID: 6225217
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Giant fibrin fragments derived from crosslinked fibrin: structure and clinical implication.
    Gaffney PJ; Joe F; Mahmoud M
    Thromb Res; 1980 Dec 1-15; 20(5-6):647-62. PubMed ID: 7233388
    [No Abstract]   [Full Text] [Related]  

  • 9. Plasmic degradation of crosslinked fibrin. Characterization of new macromolecular soluble complexes and a model of their structure.
    Francis CW; Marder VJ; Barlow GH
    J Clin Invest; 1980 Nov; 66(5):1033-43. PubMed ID: 6448866
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterisation of a soluble D dimer-E complex in crosslinked fibrin digests.
    Gaffney PJ; Lane DA; Kakkar VV; Brasher M
    Thromb Res; 1975 Jul; 7(1):89-99. PubMed ID: 125467
    [No Abstract]   [Full Text] [Related]  

  • 11. Plasma crosslinked fibrin polymers: quantitation based on tissue plasminogen activator conversion to D-dimer and measurement in normal and patients with acute thrombotic disorders.
    Kornberg A; Francis CW; Marder VJ
    Blood; 1992 Aug; 80(3):709-17. PubMed ID: 1386260
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Different molecular forms of plasminogen and plasmin produced by urokinase in human plasma and their relation to protease inhibitors and lysis of fibrinogen and fibrin.
    Müllertz S
    Biochem J; 1974 Nov; 143(2):273-83. PubMed ID: 4282470
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fibrin and fibrinogen proteolysis products: comparison between gel filtration and SDS polyacrylamide electrophoresis analysis.
    Alkjaersig N; Davies A; Fletcher A
    Thromb Haemost; 1977 Aug; 38(2):524-5. PubMed ID: 145666
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The detection of neoantigenic sites on the D-dimer peptide isolated from plasmin digested cross linked fibrin.
    Lee-Own V; Gordon YB; Chard T
    Thromb Res; 1979 Jan; 14(1):77-84. PubMed ID: 154752
    [No Abstract]   [Full Text] [Related]  

  • 15. Isolation of a low molecular weight form of plasminogen.
    Paoni NF; Castellino FJ
    Biochem Biophys Res Commun; 1975 Jul; 65(2):757-64. PubMed ID: 125089
    [No Abstract]   [Full Text] [Related]  

  • 16. The effect of plasmin on the subunit structure of human fibrin.
    Pizzo SV; Schwartz ML; Hill RL; McKee PA
    J Biol Chem; 1973 Jul; 248(13):4574-83. PubMed ID: 4268861
    [No Abstract]   [Full Text] [Related]  

  • 17. Fate of fibrinopeptides in the reaction between human plasmin and fibrinogen.
    Lahiri B; Shainoff JR
    Biochim Biophys Acta; 1973 Mar; 303(1):161-70. PubMed ID: 4267201
    [No Abstract]   [Full Text] [Related]  

  • 18. Physicochemical and biological properties of human and canine plasmins.
    Takeda Y; Nakabayashi M
    J Clin Invest; 1974 Jan; 53(1):154-62. PubMed ID: 4128408
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of plasmin in the degradation of the stroma-derived fibrin in human ovarian carcinoma.
    Wilhelm O; Hafter R; Henschen A; Schmitt M; Graeff H
    Blood; 1990 Apr; 75(8):1673-8. PubMed ID: 2139349
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Digestion of fibrin by thrombin.
    Triantaphyllopoulos DC; Chandra S
    Biochim Biophys Acta; 1973 Nov; 328(1):229-32. PubMed ID: 4271567
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.