BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 15884878)

  • 21. Solid-phase direct write (SPDW) of carbon via scanning force microscopy.
    Spinney PS; Collins SD; Smith RL
    Nano Lett; 2007 Jun; 7(6):1512-5. PubMed ID: 17488134
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Controllable patterning and CVD growth of isolated carbon nanotubes with direct parallel writing of catalyst using dip-pen nanolithography.
    Kuljanishvili I; Dikin DA; Rozhok S; Mayle S; Chandrasekhar V
    Small; 2009 Nov; 5(22):2523-7. PubMed ID: 19827053
    [No Abstract]   [Full Text] [Related]  

  • 23. Bovine serum albumin film as a template for controlled nanopancake and nanobubble formation: in situ atomic force microscopy and nanolithography study.
    Kolivoška V; Gál M; Hromadová M; Lachmanová S; Tarábková H; Janda P; Pospíšil L; Turoňová AM
    Colloids Surf B Biointerfaces; 2012 Jun; 94():213-9. PubMed ID: 22341519
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nanomachining by rubbing at ultrasonic frequency under controlled shear force.
    Muraoka M
    J Nanosci Nanotechnol; 2011 Mar; 11(3):1986-90. PubMed ID: 21449337
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development of an enzymatic reactor applying spontaneously adsorbed trypsin on the surface of a PDMS microfluidic device.
    Kecskemeti A; Bako J; Csarnovics I; Csosz E; Gaspar A
    Anal Bioanal Chem; 2017 May; 409(14):3573-3585. PubMed ID: 28299417
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Patterning pentacene surfaces by local oxidation nanolithography.
    Losilla NS; Martinez J; Bystrenova E; Greco P; Biscarini F; García R
    Ultramicroscopy; 2010 May; 110(6):729-32. PubMed ID: 20226594
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A liftoff technique for molecular nanopatterning.
    Hang Q; Wang Y; Lieberman M; Bernstein GH
    J Nanosci Nanotechnol; 2003 Aug; 3(4):309-12. PubMed ID: 14598444
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sub-60 nm nanofluidic channels fabricated by glass-glass bonding.
    Liao KP; Yao NK; Kuo TS
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2832-5. PubMed ID: 17946140
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Force spectroscopy with a small dithering of AFM tip: a method of direct and continuous measurement of the spring constant of single molecules and molecular complexes.
    Chtcheglova LA; Shubeita GT; Sekatskii SK; Dietler G
    Biophys J; 2004 Feb; 86(2):1177-84. PubMed ID: 14747352
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Direct patterning of zinc oxide with control of reflected color through nano-oxidation using an atomic force microscope.
    Hwang JS; Chen LW; Chen TC; Kuo CW; Hu ZS; Tsai TR; Wu YJ; Lin TY; Jhuo YY; Cheng CY; Lin CM; Liu YH
    Nanotechnology; 2009 Feb; 20(5):055302. PubMed ID: 19417343
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Adhesion control for micro- and nanomanipulation.
    Dejeu J; Bechelany M; Rougeot P; Philippe L; Gauthier M
    ACS Nano; 2011 Jun; 5(6):4648-57. PubMed ID: 21627137
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nanofluidic channels fabrication and manipulation of DNA molecules.
    Wang K; Yue S; Wang L; Jin A; Gu C; Wang P; Wang H; Xu X; Wang Y; Niu H
    IEE Proc Nanobiotechnol; 2006 Feb; 153(1):11-5. PubMed ID: 16480321
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nanoparticle-assisted micropatterning of active proteins on solid substrate.
    Wang C; Zhang Y; Seng HS; Ngo LL
    Biosens Bioelectron; 2006 Feb; 21(8):1638-43. PubMed ID: 16095896
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High-speed, sub-15 nm feature size thermochemical nanolithography.
    Szoszkiewicz R; Okada T; Jones SC; Li TD; King WP; Marder SR; Riedo E
    Nano Lett; 2007 Apr; 7(4):1064-9. PubMed ID: 17385937
    [TBL] [Abstract][Full Text] [Related]  

  • 35. May the force be with you.
    Nat Nanotechnol; 2009 May; 4(5):271. PubMed ID: 19421201
    [No Abstract]   [Full Text] [Related]  

  • 36. Monitoring FET flow control and wall adsorption of charged fluorescent dye molecules in nanochannels integrated into a multiple internal reflection infrared waveguide.
    Oh YJ; Gamble TC; Leonhardt D; Chung CH; Brueck SR; Ivory CF; Lopez GP; Petsev DN; Han SM
    Lab Chip; 2008 Feb; 8(2):251-8. PubMed ID: 18231663
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Lateral manipulation for the positioning of molecular guests within the confinements of a highly stable self-assembled organic surface network.
    Stöhr M; Wahl M; Spillmann H; Gade LH; Jung TA
    Small; 2007 Aug; 3(8):1336-40. PubMed ID: 17579917
    [No Abstract]   [Full Text] [Related]  

  • 38. Nanomanipulation: Molecular cranes swing into action.
    Duwez AS
    Nat Nanotechnol; 2008 Apr; 3(4):188-9. PubMed ID: 18654499
    [No Abstract]   [Full Text] [Related]  

  • 39. New approaches to nanofabrication: molding, printing, and other techniques.
    Gates BD; Xu Q; Stewart M; Ryan D; Willson CG; Whitesides GM
    Chem Rev; 2005 Apr; 105(4):1171-96. PubMed ID: 15826012
    [No Abstract]   [Full Text] [Related]  

  • 40. Nanoscale thermal analysis of an energetic material.
    King WP; Saxena S; Nelson BA; Weeks BL; Pitchimani R
    Nano Lett; 2006 Sep; 6(9):2145-9. PubMed ID: 16968041
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.