These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 15884886)
21. Enhanced release of liquid from carbon nanotubes due to entrainment by an air layer. Sinha Ray S; Chando P; Yarin AL Nanotechnology; 2009 Mar; 20(9):095711. PubMed ID: 19417507 [TBL] [Abstract][Full Text] [Related]
22. Exciton energy transfer in pairs of single-walled carbon nanotubes. Qian H; Georgi C; Anderson N; Green AA; Hersam MC; Novotny L; Hartschuh A Nano Lett; 2008 May; 8(5):1363-7. PubMed ID: 18366189 [TBL] [Abstract][Full Text] [Related]
23. Room temperature purification of few-walled carbon nanotubes with high yield. Feng Y; Zhang H; Hou Y; McNicholas TP; Yuan D; Yang S; Ding L; Feng W; Liu J ACS Nano; 2008 Aug; 2(8):1634-8. PubMed ID: 19206366 [TBL] [Abstract][Full Text] [Related]
24. The effects of substrate phonon mode scattering on transport in carbon nanotubes. Perebeinos V; Rotkin SV; Petrov AG; Avouris P Nano Lett; 2009 Jan; 9(1):312-6. PubMed ID: 19055370 [TBL] [Abstract][Full Text] [Related]
25. Generic nanomaterial positioning by carrier and stationary phase design. Yerushalmi R; Ho JC; Jacobson ZA; Javey A Nano Lett; 2007 Sep; 7(9):2764-8. PubMed ID: 17661524 [TBL] [Abstract][Full Text] [Related]
26. Synthesis of carbon nanotubes by rolling up patterned graphene nanoribbons using selective atomic adsorption. Yu D; Liu F Nano Lett; 2007 Oct; 7(10):3046-50. PubMed ID: 17845065 [TBL] [Abstract][Full Text] [Related]
28. A tight-binding grand canonical Monte Carlo study of the catalytic growth of carbon nanotubes. Amara H; Bichara C; Ducastelle F J Nanosci Nanotechnol; 2008 Nov; 8(11):6099-104. PubMed ID: 19198351 [TBL] [Abstract][Full Text] [Related]
29. Electronic response properties of carbon nanotubes in magnetic fields. Sebastiani D; Kudin KN ACS Nano; 2008 Apr; 2(4):661-8. PubMed ID: 19206596 [TBL] [Abstract][Full Text] [Related]
30. Diameter-dependent elastic modulus supports the metastable-catalyst growth of carbon nanotubes. Lee K; Lukić B; Magrez A; Seo JW; Briggs GA; Kulik AJ; Forró L Nano Lett; 2007 Jun; 7(6):1598-602. PubMed ID: 17503869 [TBL] [Abstract][Full Text] [Related]
31. A multi scale theoretical study of Li+ interaction with carbon nanotubes. Mpourmpakis G; Tylianakis E; Papanikolaou D; Froudakis GE J Nanosci Nanotechnol; 2006 Dec; 6(12):3731-5. PubMed ID: 17256322 [TBL] [Abstract][Full Text] [Related]
32. Importance of capillary forces in the assembly of carbon nanotubes in a polymer colloid lattice. Jurewicz I; Keddie JL; Dalton AB Langmuir; 2012 May; 28(21):8266-74. PubMed ID: 22548245 [TBL] [Abstract][Full Text] [Related]
33. Effect of filling on the compressibility of carbon nanotubes: predictions from molecular dynamics simulations. Trotter H; Phillips R; Ni B; Hu Y; Sinnott SB; Mikulski PT; Harrison JA J Nanosci Nanotechnol; 2005 Apr; 5(4):536-41. PubMed ID: 16004116 [TBL] [Abstract][Full Text] [Related]
35. SEM and raman spectroscopy of multiwalled carbon nanotubes grown by novel technique of ash supported catalysts. Bhalerao GM; Waugh S; Ingale A; Sinha AK; Babu M; Tiwari P; Nandedkar RV J Nanosci Nanotechnol; 2007 Jun; 7(6):1860-6. PubMed ID: 17654955 [TBL] [Abstract][Full Text] [Related]
36. Controlled growth-reversal of catalytic carbon nanotubes under electron-beam irradiation. Stolojan V; Tison Y; Chen GY; Silva R Nano Lett; 2006 Sep; 6(9):1837-41. PubMed ID: 16967987 [TBL] [Abstract][Full Text] [Related]
37. The use of acoustic radiation forces to position particles within fluid droplets. Oberti S; Neild A; Quach R; Dual J Ultrasonics; 2009 Jan; 49(1):47-52. PubMed ID: 18590923 [TBL] [Abstract][Full Text] [Related]
38. Dispersion study of long and aligned multi-walled carbon nanotubes in water. Glory J; Mierczynska A; Pinault M; Mayne-L'Hermite M; Reynaud C J Nanosci Nanotechnol; 2007 Oct; 7(10):3458-62. PubMed ID: 18330157 [TBL] [Abstract][Full Text] [Related]