These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
381 related articles for article (PubMed ID: 15884961)
1. Simulations on the thermal decomposition of a poly(dimethylsiloxane) polymer using the ReaxFF reactive force field. Chenoweth K; Cheung S; van Duin AC; Goddard WA; Kober EM J Am Chem Soc; 2005 May; 127(19):7192-202. PubMed ID: 15884961 [TBL] [Abstract][Full Text] [Related]
2. ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation. Chenoweth K; van Duin AC; Goddard WA J Phys Chem A; 2008 Feb; 112(5):1040-53. PubMed ID: 18197648 [TBL] [Abstract][Full Text] [Related]
3. Initiation mechanisms and kinetics of pyrolysis and combustion of JP-10 hydrocarbon jet fuel. Chenoweth K; van Duin AC; Dasgupta S; Goddard WA J Phys Chem A; 2009 Mar; 113(9):1740-6. PubMed ID: 19209880 [TBL] [Abstract][Full Text] [Related]
4. ReaxFF-molecular dynamics simulations of non-oxidative and non-catalyzed thermal decomposition of methane at high temperatures. Lümmen N Phys Chem Chem Phys; 2010 Jul; 12(28):7883-93. PubMed ID: 20505869 [TBL] [Abstract][Full Text] [Related]
5. Atomistic-scale simulations of the initial chemical events in the thermal initiation of triacetonetriperoxide. van Duin AC; Zeiri Y; Dubnikova F; Kosloff R; Goddard WA J Am Chem Soc; 2005 Aug; 127(31):11053-62. PubMed ID: 16076213 [TBL] [Abstract][Full Text] [Related]
6. Development of the ReaxFF reactive force field for describing transition metal catalyzed reactions, with application to the initial stages of the catalytic formation of carbon nanotubes. Nielson KD; van Duin AC; Oxgaard J; Deng WQ; Goddard WA J Phys Chem A; 2005 Jan; 109(3):493-9. PubMed ID: 16833370 [TBL] [Abstract][Full Text] [Related]
7. Effects of fuel additives on the thermal cracking of n-decane from reactive molecular dynamics. Wang QD; Hua XX; Cheng XM; Li JQ; Li XY J Phys Chem A; 2012 Apr; 116(15):3794-801. PubMed ID: 22435791 [TBL] [Abstract][Full Text] [Related]
8. Thermal decomposition of condensed-phase nitromethane from molecular dynamics from ReaxFF reactive dynamics. Han SP; van Duin AC; Goddard WA; Strachan A J Phys Chem B; 2011 May; 115(20):6534-40. PubMed ID: 21542572 [TBL] [Abstract][Full Text] [Related]
9. Density-dependent liquid nitromethane decomposition: molecular dynamics simulations based on ReaxFF. Rom N; Zybin SV; van Duin AC; Goddard WA; Zeiri Y; Katz G; Kosloff R J Phys Chem A; 2011 Sep; 115(36):10181-202. PubMed ID: 21812413 [TBL] [Abstract][Full Text] [Related]
10. Thermal decomposition of RDX from reactive molecular dynamics. Strachan A; Kober EM; van Duin AC; Oxgaard J; Goddard WA J Chem Phys; 2005 Feb; 122(5):54502. PubMed ID: 15740334 [TBL] [Abstract][Full Text] [Related]
11. ReaxFF reactive force field for the Y-doped BaZrO3 proton conductor with applications to diffusion rates for multigranular systems. van Duin AC; Merinov BV; Han SS; Dorso CO; Goddard WA J Phys Chem A; 2008 Nov; 112(45):11414-22. PubMed ID: 18925731 [TBL] [Abstract][Full Text] [Related]
12. ReaxFF reactive force field development and applications for molecular dynamics simulations of ammonia borane dehydrogenation and combustion. Weismiller MR; van Duin AC; Lee J; Yetter RA J Phys Chem A; 2010 May; 114(17):5485-92. PubMed ID: 20384351 [TBL] [Abstract][Full Text] [Related]
13. Carbon cluster formation during thermal decomposition of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine and 1,3,5-triamino-2,4,6-trinitrobenzene high explosives from ReaxFF reactive molecular dynamics simulations. Zhang L; Zybin SV; van Duin AC; Dasgupta S; Goddard WA; Kober EM J Phys Chem A; 2009 Oct; 113(40):10619-40. PubMed ID: 19791809 [TBL] [Abstract][Full Text] [Related]
14. Molecular dynamics simulations of laser-induced incandescence of soot using an extended ReaxFF reactive force field. Kamat AM; van Duin AC; Yakovlev A J Phys Chem A; 2010 Dec; 114(48):12561-72. PubMed ID: 21067165 [TBL] [Abstract][Full Text] [Related]
15. Modeling the sorption dynamics of NaH using a reactive force field. Ojwang JG; van Santen R; Kramer GJ; van Duin AC; Goddard WA J Chem Phys; 2008 Apr; 128(16):164714. PubMed ID: 18447486 [TBL] [Abstract][Full Text] [Related]
16. ReaxFF molecular dynamics simulations of oxidation of toluene at high temperatures. Cheng XM; Wang QD; Li JQ; Wang JB; Li XY J Phys Chem A; 2012 Oct; 116(40):9811-8. PubMed ID: 22998396 [TBL] [Abstract][Full Text] [Related]
17. Development of a ReaxFF reactive force field for aqueous chloride and copper chloride. Rahaman O; van Duin AC; Bryantsev VS; Mueller JE; Solares SD; Goddard WA; Doren DJ J Phys Chem A; 2010 Mar; 114(10):3556-68. PubMed ID: 20180586 [TBL] [Abstract][Full Text] [Related]
18. Thermal decomposition of hydrazines from reactive dynamics using the ReaxFF reactive force field. Zhang L; Duin AC; Zybin SV; Goddard WA J Phys Chem B; 2009 Aug; 113(31):10770-8. PubMed ID: 19601597 [TBL] [Abstract][Full Text] [Related]
19. Development and application of a ReaxFF reactive force field for hydrogen combustion. Agrawalla S; van Duin AC J Phys Chem A; 2011 Feb; 115(6):960-72. PubMed ID: 21261320 [TBL] [Abstract][Full Text] [Related]
20. Effects of defects on thermal decomposition of HMX via ReaxFF molecular dynamics simulations. Zhou TT; Huang FL J Phys Chem B; 2011 Jan; 115(2):278-87. PubMed ID: 21142162 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]