BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 15885092)

  • 1. Oligosaccharide synthesis in Fibrobacter succinogenes S85 and its modulation by the substrate.
    Nouaille R; Matulova M; Delort AM; Forano E
    FEBS J; 2005 May; 272(10):2416-27. PubMed ID: 15885092
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production of oligosaccharides and cellobionic acid by Fibrobacter succinogenes S85 growing on sugars, cellulose and wheat straw.
    Nouaille R; Matulova M; Pätoprstý V; Delort AM; Forano E
    Appl Microbiol Biotechnol; 2009 Jun; 83(3):425-33. PubMed ID: 19184595
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Concurrent maltodextrin and cellodextrin synthesis by Fibrobacter succinogenes S85 as identified by 2D NMR spectroscopy.
    Matulova M; Delort AM; Nouaille R; Gaudet G; Forano E
    Eur J Biochem; 2001 Jul; 268(14):3907-15. PubMed ID: 11453983
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production of maltodextrin 1-phosphate by Fibrobacter succinogenes S85.
    Nouaille R; Matulova M; Delort AM; Forano E
    FEBS Lett; 2004 Oct; 576(1-2):226-30. PubMed ID: 15474042
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Use of glucose and cellobiose by 3 strains of Fibrobacter succinogenes].
    Gaudet G; Cheng KJ
    Reprod Nutr Dev; 1990; Suppl 2():201s-202s. PubMed ID: 2206331
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo 13C NMR study of glucose and cellobiose metabolism by four cellulolytic strains of the genus Fibrobacter.
    Matheron C; Delort AM; Gaudet G; Forano E
    Biodegradation; 1998; 9(6):451-61. PubMed ID: 10335584
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of cellobiose, glucose, and cellulose on the survival of Fibrobacter succinogenes A3C cultures grown under ammonia limitation.
    Thomas S; Russell JB
    Curr Microbiol; 2004 Mar; 48(3):219-23. PubMed ID: 15057469
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NMR study of cellulose and wheat straw degradation by Ruminococcus albus 20.
    Matulova M; Nouaille R; Capek P; Péan M; Delort AM; Forano E
    FEBS J; 2008 Jul; 275(13):3503-11. PubMed ID: 18513327
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biosynthesis of radiolabeled cellodextrins by the Clostridium thermocellum cellobiose and cellodextrin phosphorylases for measurement of intracellular sugars.
    Zhang YH; Lynd LR
    Appl Microbiol Biotechnol; 2006 Mar; 70(1):123-9. PubMed ID: 16402169
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous but differential metabolism of glucose and cellobiose in Fibrobacter succinogenes cells, studied by in vivo 13C-NMR.
    Matheron C; Delort AM; Gaudet G; Forano E
    Can J Microbiol; 1996 Nov; 42(11):1091-9. PubMed ID: 8941985
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ionized calcium requirement of rumen cellulolytic bacteria.
    Morales MS; Dehority BA
    J Dairy Sci; 2009 Oct; 92(10):5079-91. PubMed ID: 19762826
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Degradation of wheat straw by Fibrobacter succinogenes S85: a liquid- and solid-state nuclear magnetic resonance study.
    Matulova M; Nouaille R; Capek P; Péan M; Forano E; Delort AM
    Appl Environ Microbiol; 2005 Mar; 71(3):1247-53. PubMed ID: 15746325
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diauxic growth of Fibrobacter succinogenes S85 on cellobiose and lactose.
    Ghali I; Sofyan A; Ohmori H; Shinkai T; Mitsumori M
    FEMS Microbiol Lett; 2017 Aug; 364(15):. PubMed ID: 28859317
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellodextrin efflux by the cellulolytic ruminal bacterium Fibrobacter succinogenes and its potential role in the growth of nonadherent bacteria.
    Wells JE; Russell JB; Shi Y; Weimer PJ
    Appl Environ Microbiol; 1995 May; 61(5):1757-62. PubMed ID: 7646013
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of a family 45 glycosyl hydrolase from Fibrobacter succinogenes S85.
    Seon Park J; Russell JB; Wilson DB
    Anaerobe; 2007 Apr; 13(2):83-8. PubMed ID: 17292641
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluating Models of Cellulose Degradation by Fibrobacter succinogenes S85.
    Burnet MC; Dohnalkova AC; Neumann AP; Lipton MS; Smith RD; Suen G; Callister SJ
    PLoS One; 2015; 10(12):e0143809. PubMed ID: 26629814
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Outer membrane vesicles from Fibrobacter succinogenes S85 contain an array of carbohydrate-active enzymes with versatile polysaccharide-degrading capacity.
    Arntzen MØ; Várnai A; Mackie RI; Eijsink VGH; Pope PB
    Environ Microbiol; 2017 Jul; 19(7):2701-2714. PubMed ID: 28447389
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of a continuous culture of Fibrobacter succinogenes S85 on a standardized glucose medium.
    Guiavarch E; Pons A; Christophe G; Creuly C; Dussap CG
    Bioprocess Biosyst Eng; 2010 May; 33(4):417-25. PubMed ID: 19548008
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Outer membrane proteins of Fibrobacter succinogenes with potential roles in adhesion to cellulose and in cellulose digestion.
    Jun HS; Qi M; Gong J; Egbosimba EE; Forsberg CW
    J Bacteriol; 2007 Oct; 189(19):6806-15. PubMed ID: 17644604
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of Substrates on the Surface Characteristics and Membrane Proteome of Fibrobacter succinogenes S85.
    Raut MP; Karunakaran E; Mukherjee J; Biggs CA; Wright PC
    PLoS One; 2015; 10(10):e0141197. PubMed ID: 26492413
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.