BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 15885094)

  • 1. The effect of replacing the axial methionine ligand with a lysine residue in cytochrome c-550 from Paracoccus versutus assessed by X-ray crystallography and unfolding.
    Worrall JA; van Roon AM; Ubbink M; Canters GW
    FEBS J; 2005 May; 272(10):2441-55. PubMed ID: 15885094
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of ligand exchange and mobility on the peroxidase activity of a bacterial cytochrome c upon unfolding.
    Worrall JA; Diederix RE; Prudêncio M; Lowe CE; Ciofi-Baffoni S; Ubbink M; Canters GW
    Chembiochem; 2005 Apr; 6(4):747-58. PubMed ID: 15744766
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strategic roles of axial histidines in structure formation and redox regulation of tetraheme cytochrome c3.
    Takayama Y; Werbeck ND; Komori H; Morita K; Ozawa K; Higuchi Y; Akutsu H
    Biochemistry; 2008 Sep; 47(36):9405-15. PubMed ID: 18702516
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Replacement of the methionine axial ligand in cytochrome c(550) by a lysine: effects on the haem electronic structure.
    Louro RO; de Waal EC; Ubbink M; Turner DL
    FEBS Lett; 2002 Jan; 510(3):185-8. PubMed ID: 11801251
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystallographic and NMR investigation of cobalt-substituted amicyanin.
    Carrell CJ; Wang X; Jones L; Jarrett WL; Davidson VL; Mathews FS
    Biochemistry; 2004 Jul; 43(29):9381-9. PubMed ID: 15260481
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure of the cytochrome complex SoxXA of Paracoccus pantotrophus, a heme enzyme initiating chemotrophic sulfur oxidation.
    Dambe T; Quentmeier A; Rother D; Friedrich C; Scheidig AJ
    J Struct Biol; 2005 Dec; 152(3):229-34. PubMed ID: 16297640
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bis-methionine ligation to heme iron in mutants of cytochrome b562. 2. Characterization by NMR of heme-ligand interactions.
    Barker PD; Freund SM
    Biochemistry; 1996 Oct; 35(42):13627-35. PubMed ID: 8885842
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Suppression of axial methionine fluxion in Hydrogenobacter thermophilus Gln64Asn cytochrome c552.
    Wen X; Bren KL
    Biochemistry; 2005 Apr; 44(13):5225-33. PubMed ID: 15794659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of mutant Met100Lys of cytochrome c-550 from Thiobacillus versutus with lysine-histidine heme ligation.
    Ubbink M; Campos AP; Teixeira M; Hunt NI; Hill HA; Canters GW
    Biochemistry; 1994 Aug; 33(33):10051-9. PubMed ID: 8060974
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction of cytochrome c with cytochrome c oxidase: an NMR study on two soluble fragments derived from Paracoccus denitrificans.
    Wienk H; Maneg O; Lücke C; Pristovsek P; Löhr F; Ludwig B; Rüterjans H
    Biochemistry; 2003 May; 42(20):6005-12. PubMed ID: 12755602
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heme axial methionine fluxion in Pseudomonas aeruginosa Asn64Gln cytochrome c551.
    Wen X; Bren KL
    Inorg Chem; 2005 Nov; 44(23):8587-93. PubMed ID: 16271000
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The function of tyrosine 74 of cytochrome b5.
    Vergères G; Chen DY; Wu FF; Waskell L
    Arch Biochem Biophys; 1993 Sep; 305(2):231-41. PubMed ID: 8373159
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of pH on the iso-1-cytochrome c denatured state: changing constraints due to heme ligation.
    Smith CR; Wandschneider E; Bowler BE
    Biochemistry; 2003 Feb; 42(7):2174-84. PubMed ID: 12590607
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solution structure of thermostable cytochrome c-552 from Hydrogenobacter thermophilus determined by 1H-NMR spectroscopy.
    Hasegawa J; Yoshida T; Yamazaki T; Sambongi Y; Yu Y; Igarashi Y; Kodama T; Yamazaki K; Kyogoku Y; Kobayashi Y
    Biochemistry; 1998 Jul; 37(27):9641-9. PubMed ID: 9657676
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The 1.6A X-ray structure of the unusual c-type cytochrome, cytochrome cL, from the methylotrophic bacterium Methylobacterium extorquens.
    Williams P; Coates L; Mohammed F; Gill R; Erskine P; Bourgeois D; Wood SP; Anthony C; Cooper JB
    J Mol Biol; 2006 Mar; 357(1):151-62. PubMed ID: 16414073
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rupture of the hydrogen bond linking two Omega-loops induces the molten globule state at neutral pH in cytochrome c.
    Sinibaldi F; Piro MC; Howes BD; Smulevich G; Ascoli F; Santucci R
    Biochemistry; 2003 Jun; 42(24):7604-10. PubMed ID: 12809517
    [TBL] [Abstract][Full Text] [Related]  

  • 17. X-Ray structure of the cytochrome c2 isolated from Paracoccus denitrificans refined to 1.7-A resolution.
    Benning MM; Meyer TE; Holden HM
    Arch Biochem Biophys; 1994 May; 310(2):460-6. PubMed ID: 8179333
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural basis for the network of functional cooperativities in cytochrome c(3) from Desulfovibrio gigas: solution structures of the oxidised and reduced states.
    Brennan L; Turner DL; Messias AC; Teodoro ML; LeGall J; Santos H; Xavier AV
    J Mol Biol; 2000 Apr; 298(1):61-82. PubMed ID: 10756105
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of a conserved glutamine residue in tuning the catalytic activity of Escherichia coli cytochrome c nitrite reductase.
    Clarke TA; Kemp GL; Van Wonderen JH; Doyle RM; Cole JA; Tovell N; Cheesman MR; Butt JN; Richardson DJ; Hemmings AM
    Biochemistry; 2008 Mar; 47(12):3789-99. PubMed ID: 18311941
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structure of the oxidised and reduced acidic cytochrome c3from Desulfovibrio africanus.
    Nørager S; Legrand P; Pieulle L; Hatchikian C; Roth M
    J Mol Biol; 1999 Jul; 290(4):881-902. PubMed ID: 10398589
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.