BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 15885313)

  • 1. Tissue-specific alterations in the glucocorticoid sensitivity of immune cells following repeated social defeat in mice.
    Engler H; Engler A; Bailey MT; Sheridan JF
    J Neuroimmunol; 2005 Jun; 163(1-2):110-9. PubMed ID: 15885313
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cytokine production by spleen cells after social defeat in mice: activation of T cells and reduced inhibition by glucocorticoids.
    Merlot E; Moze E; Dantzer R; Neveu PJ
    Stress; 2004 Mar; 7(1):55-61. PubMed ID: 15204033
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of repeated social stress on leukocyte distribution in bone marrow, peripheral blood and spleen.
    Engler H; Bailey MT; Engler A; Sheridan JF
    J Neuroimmunol; 2004 Mar; 148(1-2):106-15. PubMed ID: 14975591
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression of glucocorticoid resistance following social stress requires a second signal.
    Avitsur R; Padgett DA; Dhabhar FS; Stark JL; Kramer KA; Engler H; Sheridan JF
    J Leukoc Biol; 2003 Oct; 74(4):507-13. PubMed ID: 12960258
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physical defeat reduces the sensitivity of murine splenocytes to the suppressive effects of corticosterone.
    Bailey MT; Avitsur R; Engler H; Padgett DA; Sheridan JF
    Brain Behav Immun; 2004 Sep; 18(5):416-24. PubMed ID: 15265534
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Social stress and the regulation of tumor necrosis factor-alpha secretion.
    Avitsur R; Kavelaars A; Heijnen C; Sheridan JF
    Brain Behav Immun; 2005 Jul; 19(4):311-7. PubMed ID: 15944070
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Psychogenic stress prior to burn injury has differential effects on bone marrow and cytokine responses.
    Dugan AL; Schwemberger S; Noel GJ; Babcock G; Ogle CK; Horseman ND
    Exp Biol Med (Maywood); 2007 Feb; 232(2):253-61. PubMed ID: 17259333
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Early lymphoid progenitors in mouse and man are highly sensitive to glucocorticoids.
    Igarashi H; Medina KL; Yokota T; Rossi MI; Sakaguchi N; Comp PC; Kincade PW
    Int Immunol; 2005 May; 17(5):501-11. PubMed ID: 15746243
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stress and prolactin effects on bone marrow myeloid cells, serum chemokine and serum glucocorticoid levels in mice.
    Dugan AL; Schwemberger S; Noel GJ; Babcock GF; Ogle CK; Buckley DJ; Horseman ND; Gregerson KA
    Neuroimmunomodulation; 2007; 14(6):287-96. PubMed ID: 18287810
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of glucocorticoid sensitivity in thymocytes from burn-injured mice.
    D'Elia M; Patenaude J; Bernier J
    Am J Physiol Endocrinol Metab; 2009 Jan; 296(1):E97-104. PubMed ID: 19001548
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stress-induced alterations in the programmed natural cycles of post-natal lymphoid organ development in C57BL/6 mice: Evidence for a regulatory feedback relationship between bone marrow and thymus.
    Domínguez-Gerpe L
    Immunobiology; 2007; 212(8):613-27. PubMed ID: 17869639
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Myeloid-derived suppressor cell activation by combined LPS and IFN-gamma treatment impairs DC development.
    Greifenberg V; Ribechini E; Rössner S; Lutz MB
    Eur J Immunol; 2009 Oct; 39(10):2865-76. PubMed ID: 19637228
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interleukin-1 receptor type 1-deficient mice fail to develop social stress-associated glucocorticoid resistance in the spleen.
    Engler H; Bailey MT; Engler A; Stiner-Jones LM; Quan N; Sheridan JF
    Psychoneuroendocrinology; 2008 Jan; 33(1):108-17. PubMed ID: 18037570
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ethanol suppression of the hypothalamic proopiomelanocortin level and the splenic NK cell cytolytic activity is associated with a reduction in the expression of proinflammatory cytokines but not anti-inflammatory cytokines in neuroendocrine and immune cells.
    Chen CP; Boyadjieva NI; Advis JP; Sarkar DK
    Alcohol Clin Exp Res; 2006 Nov; 30(11):1925-32. PubMed ID: 17067358
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Corticosterone Production during Repeated Social Defeat Causes Monocyte Mobilization from the Bone Marrow, Glucocorticoid Resistance, and Neurovascular Adhesion Molecule Expression.
    Niraula A; Wang Y; Godbout JP; Sheridan JF
    J Neurosci; 2018 Feb; 38(9):2328-2340. PubMed ID: 29382712
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel anti-inflammatory function of human galectin-1: inhibition of hematopoietic progenitor cell mobilization.
    Kiss J; Kunstár A; Fajka-Boja R; Dudics V; Tóvári J; Légrádi A; Monostori E; Uher F
    Exp Hematol; 2007 Feb; 35(2):305-13. PubMed ID: 17258079
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Limited brain diffusion of the glucocorticoid receptor agonist RU28362 following i.c.v. administration: implications for i.c.v. drug delivery and glucocorticoid negative feedback in the hypothalamic-pituitary-adrenal axis.
    Francis AB; Pace TW; Ginsberg AB; Rubin BA; Spencer RL
    Neuroscience; 2006 Sep; 141(3):1503-15. PubMed ID: 16806720
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Di-(2-ethylhexyl) phthalate affects immune cells from atopic prone mice in vitro.
    Koike E; Inoue K; Yanagisawa R; Takano H
    Toxicology; 2009 May; 259(1-2):54-60. PubMed ID: 19428943
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of stem cell mobilisation with granulocyte colony-stimulating factor on the morphology of the haematopoietic organs in mice.
    Barcew K; Paczkowska E; Dabkowska E; Baskiewicz-Masiuk M; Marchlewicz M; Domański L; Sagan L; Wiszniewska B; Machaliński B
    Folia Morphol (Warsz); 2007 Feb; 66(1):1-9. PubMed ID: 17533587
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dysregulation of the Th1/Th2 cytokine profile is associated with immunosuppression induced by hypothalamic-pituitary-adrenal axis activation in mice.
    Viveros-Paredes JM; Puebla-Pérez AM; Gutiérrez-Coronado O; Sandoval-Ramírez L; Villaseñor-García MM
    Int Immunopharmacol; 2006 May; 6(5):774-81. PubMed ID: 16546708
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.