BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 15885456)

  • 1. Factors affecting the characteristics of rapidly disintegrating tablets in the mouth prepared by the crystalline transition of amorphous sucrose.
    Sugimoto M; Maejima T; Narisawa S; Matsubara K; Yoshino H
    Int J Pharm; 2005 May; 296(1-2):64-72. PubMed ID: 15885456
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of manufacturing method for rapidly disintegrating oral tablets using the crystalline transition of amorphous sucrose.
    Sugimoto M; Narisawa S; Matsubara K; Yoshino H; Nakano M; Handa T
    Int J Pharm; 2006 Aug; 320(1-2):71-8. PubMed ID: 16750604
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The preparation of rapidly disintegrating tablets in the mouth.
    Sugimoto M; Matsubara K; Koida Y; Kobayashi M
    Pharm Dev Technol; 2001 Nov; 6(4):487-93. PubMed ID: 11775950
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of formulated ingredients on rapidly disintegrating oral tablets prepared by the crystalline transition method.
    Sugimoto M; Narisawa S; Matsubara K; Yoshino H; Nakano M; Handa T
    Chem Pharm Bull (Tokyo); 2006 Feb; 54(2):175-80. PubMed ID: 16462059
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Particle size distribution and evolution in tablet structure during and after compaction.
    Fichtner F; Rasmuson A; Alderborn G
    Int J Pharm; 2005 Mar; 292(1-2):211-25. PubMed ID: 15725568
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Water-solid interactions. III. Effect of glass transition temperature, Tg, and processing on tensile strength of compacts of lactose and lactose/polyvinyl pyrrolidone.
    Stubberud L; Arwidsson HG; Hjortsberg V; Graffner C
    Pharm Dev Technol; 1996 Jul; 1(2):195-204. PubMed ID: 9552346
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amorphous Formulation and in Vitro Performance Testing of Instantly Disintegrating Buccal Tablets for the Emergency Delivery of Naloxone.
    Alqurshi A; Kumar Z; McDonald R; Strang J; Buanz A; Ahmed S; Allen E; Cameron P; Rickard JA; Sandhu V; Holt C; Stansfield R; Taylor D; Forbes B; Royall PG
    Mol Pharm; 2016 May; 13(5):1688-98. PubMed ID: 26977787
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of a novel sugar coating method for moisture protective tablets.
    Ando M; Ito R; Ozeki Y; Nakayama Y; Nabeshima T
    Int J Pharm; 2007 May; 336(2):319-28. PubMed ID: 17258875
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of rapidly disintegrating tablets manufactured by phase transition of sugar alcohols.
    Kuno Y; Kojima M; Ando S; Nakagami H
    J Control Release; 2005 Jun; 105(1-2):16-22. PubMed ID: 15955365
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation and evaluation of a compressed tablet rapidly disintegrating in the oral cavity.
    Bi Y; Sunada H; Yonezawa Y; Danjo K; Otsuka A; Iida K
    Chem Pharm Bull (Tokyo); 1996 Nov; 44(11):2121-7. PubMed ID: 8945778
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigating the moisture sorption behavior of amorphous sucrose using a dynamic humidity generating instrument.
    Yu X; Kappes SM; Bello-Perez LA; Schmidt SJ
    J Food Sci; 2008 Jan; 73(1):E25-35. PubMed ID: 18211350
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of rapidly disintegrating tablets prepared by a direct compression method.
    Bi YX; Sunada H; Yonezawa Y; Danjo K
    Drug Dev Ind Pharm; 1999 May; 25(5):571-81. PubMed ID: 10219525
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Drug release control and system understanding of sucrose esters matrix tablets by artificial neural networks.
    Chansanroj K; Petrović J; Ibrić S; Betz G
    Eur J Pharm Sci; 2011 Oct; 44(3):321-31. PubMed ID: 21878388
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantification of low levels of amorphous content in sucrose by hyperDSC.
    Lappalainen M; Pitkänen I; Harjunen P
    Int J Pharm; 2006 Jan; 307(2):150-5. PubMed ID: 16288841
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relationships between the effective interparticulate contact area and the tensile strength of tablets of amorphous and crystalline lactose of varying particle size.
    Sebhatu T; Alderborn G
    Eur J Pharm Sci; 1999 Aug; 8(4):235-42. PubMed ID: 10425373
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of polymer, plasticizer and filler on orally disintegrating film.
    Liew KB; Tan YT; Peh KK
    Drug Dev Ind Pharm; 2014 Jan; 40(1):110-9. PubMed ID: 23311593
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of co-processed excipients used for direct compression of orally disintegrating tablets (ODT) using novel disintegration apparatus.
    Brniak W; Jachowicz R; Krupa A; Skorka T; Niwinski K
    Pharm Dev Technol; 2013; 18(2):464-74. PubMed ID: 22881600
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solid-state properties and dissolution behaviour of tablets containing co-amorphous indomethacin-arginine.
    Lenz E; Jensen KT; Blaabjerg LI; Knop K; Grohganz H; Löbmann K; Rades T; Kleinebudde P
    Eur J Pharm Biopharm; 2015 Oct; 96():44-52. PubMed ID: 26197392
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of spray-dried co-precipitate of amorphous celecoxib containing storage and compression stabilizers.
    Dhumal RS; Shimpi SL; Paradkar AR
    Acta Pharm; 2007 Sep; 57(3):287-300. PubMed ID: 17878109
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation and evaluation of orally rapidly disintegrating tablets containing taste-masked particles using one-step dry-coated tablets technology.
    Kondo K; Niwa T; Ozeki Y; Ando M; Danjo K
    Chem Pharm Bull (Tokyo); 2011; 59(10):1214-20. PubMed ID: 21963629
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.