These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 15885619)
1. Increased levels of erucic acid in Brassica carinata by co-suppression and antisense repression of the endogenous FAD2 gene. Jadhav A; Katavic V; Marillia EF; Michael Giblin E; Barton DL; Kumar A; Sonntag C; Babic V; Keller WA; Taylor DC Metab Eng; 2005 May; 7(3):215-20. PubMed ID: 15885619 [TBL] [Abstract][Full Text] [Related]
2. Enhancing Erucic Acid and Wax Ester Production in Tesfaye M; Wang ES; Feyissa T; Herrfurth C; Haileselassie T; Kanagarajan S; Feussner I; Zhu LH Int J Mol Sci; 2024 Jun; 25(12):. PubMed ID: 38928029 [TBL] [Abstract][Full Text] [Related]
3. Strong co-suppression impedes an increase in polyunsaturated fatty acids in seeds overexpressing FAD2. Du C; Chen Y; Wang K; Yang Z; Zhao C; Jia Q; Taylor DC; Zhang M J Exp Bot; 2019 Feb; 70(3):985-994. PubMed ID: 30371807 [TBL] [Abstract][Full Text] [Related]
4. Molecular cloning and characterization of a KCS gene from Cardamine graeca and its heterologous expression in Brassica oilseeds to engineer high nervonic acid oils for potential medical and industrial use. Taylor DC; Francis T; Guo Y; Brost JM; Katavic V; Mietkiewska E; Michael Giblin E; Lozinsky S; Hoffman T Plant Biotechnol J; 2009 Dec; 7(9):925-38. PubMed ID: 19843251 [TBL] [Abstract][Full Text] [Related]
5. Development of B. carinata with super-high erucic acid content through interspecific hybridization. Roslinsky V; Falk KC; Gaebelein R; Mason AS; Eynck C Theor Appl Genet; 2021 Oct; 134(10):3167-3181. PubMed ID: 34269830 [TBL] [Abstract][Full Text] [Related]
6. Synthesis and characterization of poly(3-hydroxyalkanoates) from Brassica carinata oil with high content of erucic acid and from very long chain fatty acids. Impallomeni G; Ballistreri A; Carnemolla GM; Guglielmino SP; Nicolò MS; Cambria MG Int J Biol Macromol; 2011 Jan; 48(1):137-45. PubMed ID: 21035502 [TBL] [Abstract][Full Text] [Related]
7. Simultaneous silencing of FAD2 and FAE1 genes affects both oleic acid and erucic acid contents in Brassica napus seeds. Peng Q; Hu Y; Wei R; Zhang Y; Guan C; Ruan Y; Liu C Plant Cell Rep; 2010 Apr; 29(4):317-25. PubMed ID: 20130882 [TBL] [Abstract][Full Text] [Related]
8. Utility of the Arabidopsis FAE1 and yeast SLC1-1 genes for improvements in erucic acid and oil content in rapeseed. Katavic V; Friesen W; Barton DL; Gossen KK; Giblin EM; Luciw T; An J; Zou J; MacKenzie SL; Keller WA; Males D; Taylor DC Biochem Soc Trans; 2000 Dec; 28(6):935-7. PubMed ID: 11171262 [TBL] [Abstract][Full Text] [Related]
9. RNAi knockdown of fatty acid elongase1 alters fatty acid composition in Brassica napus. Shi J; Lang C; Wu X; Liu R; Zheng T; Zhang D; Chen J; Wu G Biochem Biophys Res Commun; 2015 Oct; 466(3):518-22. PubMed ID: 26381181 [TBL] [Abstract][Full Text] [Related]
10. Depressed expression of FAE1 and FAD2 genes modifies fatty acid profiles and storage compounds accumulation in Brassica napus seeds. Shi J; Lang C; Wang F; Wu X; Liu R; Zheng T; Zhang D; Chen J; Wu G Plant Sci; 2017 Oct; 263():177-182. PubMed ID: 28818373 [TBL] [Abstract][Full Text] [Related]
11. Towards the production of high levels of eicosapentaenoic acid in transgenic plants: the effects of different host species, genes and promoters. Cheng B; Wu G; Vrinten P; Falk K; Bauer J; Qiu X Transgenic Res; 2010 Apr; 19(2):221-9. PubMed ID: 19582587 [TBL] [Abstract][Full Text] [Related]
13. The impact of reducing fatty acid desaturation on the composition and thermal stability of rapeseed oil. Kaur H; Wang L; Stawniak N; Sloan R; van Erp H; Eastmond P; Bancroft I Plant Biotechnol J; 2020 Apr; 18(4):983-991. PubMed ID: 31553825 [TBL] [Abstract][Full Text] [Related]
14. Development of high-oleic, low-linolenic acid Ethiopian-mustard (Brassica carinata) germplasm. Velasco L; Nabloussi A; De Haro A; Fernández-Martínez JM Theor Appl Genet; 2003 Sep; 107(5):823-30. PubMed ID: 12756471 [TBL] [Abstract][Full Text] [Related]
15. Conversion of waste materials into very long chain fatty acids by the recombinant yeast Yarrowia lipolytica. Gajdoš P; Hambalko J; Slaný O; Čertík M FEMS Microbiol Lett; 2020 Mar; 367(6):. PubMed ID: 32129852 [TBL] [Abstract][Full Text] [Related]
16. Cloning and functional characterization of the fatty acid elongase 1 (FAE1) gene from high erucic Crambe abyssinica cv. Prophet. Mietkiewska E; Brost JM; Giblin EM; Barton DL; Taylor DC Plant Biotechnol J; 2007 Sep; 5(5):636-45. PubMed ID: 17565584 [TBL] [Abstract][Full Text] [Related]
17. Selection for low erucic acid and genetic mapping of loci affecting the accumulation of very long-chain fatty acids in meadowfoam seed storage lipids. Gandhi SD; Kishore VK; Crane JM; Slabaugh MB; Knapp SJ Genome; 2009 Jun; 52(6):547-56. PubMed ID: 19483773 [TBL] [Abstract][Full Text] [Related]
18. Development of ultra-high erucic acid oil in the industrial oil crop Crambe abyssinica. Li X; van Loo EN; Gruber J; Fan J; Guan R; Frentzen M; Stymne S; Zhu LH Plant Biotechnol J; 2012 Sep; 10(7):862-70. PubMed ID: 22642539 [TBL] [Abstract][Full Text] [Related]
19. Limnanthes douglasii erucic acid-specific lysophospatidic acid acyltransferase activity in oilseed rape: an analysis of biochemical effects. Wilmer JA; Brown AP; Forsyth K; Carnaby S; Barsby T; Slabas AR Biochem Soc Trans; 2000 Dec; 28(6):964-6. PubMed ID: 11171273 [TBL] [Abstract][Full Text] [Related]
20. Restoring enzyme activity in nonfunctional low erucic acid Brassica napus fatty acid elongase 1 by a single amino acid substitution. Katavic V; Mietkiewska E; Barton DL; Giblin EM; Reed DW; Taylor DC Eur J Biochem; 2002 Nov; 269(22):5625-31. PubMed ID: 12423362 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]