BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 15885653)

  • 1. Cys351 and Cys361 of the Na+/glucose cotransporter are important for both function and cell-surface expression.
    Xia X; Wang G; Peng Y; Jen J
    Arch Biochem Biophys; 2005 Jun; 438(1):63-9. PubMed ID: 15885653
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Binding of phlorizin to the isolated C-terminal extramembranous loop of the Na+/glucose cotransporter assessed by intrinsic tryptophan fluorescence.
    Xia X; Lin JT; Kinne RK
    Biochemistry; 2003 May; 42(20):6115-20. PubMed ID: 12755613
    [TBL] [Abstract][Full Text] [Related]  

  • 3. C-terminus loop 13 of Na+ glucose cotransporter SGLT1 contains a binding site for alkyl glucosides.
    Raja MM; Kipp H; Kinne RK
    Biochemistry; 2004 Aug; 43(34):10944-51. PubMed ID: 15323554
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Local conformational changes in the Vibrio Na+/galactose cotransporter.
    Veenstra M; Lanza S; Hirayama BA; Turk E; Wright EM
    Biochemistry; 2004 Mar; 43(12):3620-7. PubMed ID: 15035632
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neutralization of conservative charged transmembrane residues in the Na+/glucose cotransporter SGLT1.
    Panayotova-Heiermann M; Loo DD; Lam JT; Wright EM
    Biochemistry; 1998 Jul; 37(29):10522-8. PubMed ID: 9671524
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cadmium decreases SGLT1 messenger RNA in mouse kidney cells.
    Blumenthal SS; Ren L; Lewand DL; Krezoski SK; Petering DH
    Toxicol Appl Pharmacol; 1998 Mar; 149(1):49-54. PubMed ID: 9512726
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction of C-terminal loop 13 of sodium-glucose cotransporter SGLT1 with lipid bilayers.
    Raja MM; Kinne RK
    Biochemistry; 2005 Jun; 44(25):9123-9. PubMed ID: 15966736
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional asymmetry of the human Na+/glucose transporter (hSGLT1) in bacterial membrane vesicles.
    Quick M; Tomasevic J; Wright EM
    Biochemistry; 2003 Aug; 42(30):9147-52. PubMed ID: 12885248
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure and function of the Na+/glucose cotransporter.
    Wright EM; Loo DD; Panayotova-Heiermann M; Hirayama BA; Turk E; Eskandari S; Lam JT
    Acta Physiol Scand Suppl; 1998 Aug; 643():257-64. PubMed ID: 9789568
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Binding of phlorizin to the C-terminal loop 13 of the Na(+)/glucose cotransporter does not depend on the [560-608] disulfide bond.
    Xia X; Lin CT; Wang G; Fang H
    Arch Biochem Biophys; 2004 May; 425(1):58-64. PubMed ID: 15081894
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential regulation of three glucose transporter genes in a renal epithelial cell line.
    Clancey CJ; Lever JE
    J Cell Physiol; 2000 Nov; 185(2):244-52. PubMed ID: 11025446
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure-function relations of the first and fourth extracellular linkers of the type IIa Na+/Pi cotransporter: II. Substrate interaction and voltage dependency of two functionally important sites.
    Ehnes C; Forster IC; Bacconi A; Kohler K; Biber J; Murer H
    J Gen Physiol; 2004 Nov; 124(5):489-503. PubMed ID: 15504899
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular basis for glucose-galactose malabsorption.
    Wright EM; Turk E; Martin MG
    Cell Biochem Biophys; 2002; 36(2-3):115-21. PubMed ID: 12139397
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cysteine scanning mutagenesis of the segment between putative transmembrane helices IV and V of the high affinity Na+/Glucose cotransporter SGLT1. Evidence that this region participates in the Na+ and voltage dependence of the transporter.
    Lo B; Silverman M
    J Biol Chem; 1998 Nov; 273(45):29341-51. PubMed ID: 9792634
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cysteine-scanning mutagenesis of transmembrane segment 1 of glucose transporter GLUT1: extracellular accessibility of helix positions.
    Heinze M; Monden I; Keller K
    Biochemistry; 2004 Feb; 43(4):931-6. PubMed ID: 14744136
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of hydration in the conformational transitions between unliganded and liganded forms of loop 13 of the Na+/glucose cotransporter 1.
    Xia X; Wang G; Fang H
    Biochem Biophys Res Commun; 2004 Mar; 315(4):1018-24. PubMed ID: 14985114
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Defects in Na+/glucose cotransporter (SGLT1) trafficking and function cause glucose-galactose malabsorption.
    Martín MG; Turk E; Lostao MP; Kerner C; Wright EM
    Nat Genet; 1996 Feb; 12(2):216-20. PubMed ID: 8563765
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Membrane topology of loop 13-14 of the Na+/glucose cotransporter (SGLT1): a SCAM and fluorescent labelling study.
    Gagnon DG; Holt A; Bourgeois F; Wallendorff B; Coady MJ; Lapointe JY
    Biochim Biophys Acta; 2005 Jun; 1712(2):173-84. PubMed ID: 15904891
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The endogenous CXXC motif governs the cadmium sensitivity of the renal Na+/glucose co-transporter.
    Xia X; Wang G; Peng Y; Tu MG; Jen J; Fang H
    J Am Soc Nephrol; 2005 May; 16(5):1257-65. PubMed ID: 15829715
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coupled sodium/glucose cotransport by SGLT1 requires a negative charge at position 454.
    Díez-Sampedro A; Loo DD; Wright EM; Zampighi GA; Hirayama BA
    Biochemistry; 2004 Oct; 43(41):13175-84. PubMed ID: 15476411
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.