BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 15885738)

  • 1. Fenton-driven chemical regeneration of MTBE-spent GAC.
    Huling SG; Jones PK; Ela WP; Arnold RG
    Water Res; 2005 May; 39(10):2145-53. PubMed ID: 15885738
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Iron amendment and Fenton oxidation of MTBE-spent granular activated carbon.
    Huling SG; Hwang S
    Water Res; 2010 Apr; 44(8):2663-71. PubMed ID: 20172581
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fenton-driven chemical regeneration of MTBE-spent granular activated carbon--a pilot study.
    Huling SG; Kan E; Caldwell C; Park S
    J Hazard Mater; 2012 Feb; 205-206():55-62. PubMed ID: 22260751
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Iron optimization for Fenton-driven oxidation of MTBE-spent granular activated carbon.
    Huling SG; Jones PK; Lee TR
    Environ Sci Technol; 2007 Jun; 41(11):4090-6. PubMed ID: 17612195
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Persulfate oxidation of MTBE- and chloroform-spent granular activated carbon.
    Huling SG; Ko S; Park S; Kan E
    J Hazard Mater; 2011 Sep; 192(3):1484-90. PubMed ID: 21782339
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regeneration of granular activated carbon saturated with acetone and isopropyl alcohol via a recirculation process under H2O2/UV oxidation.
    Horng RS; Tseng IC
    J Hazard Mater; 2008 Jun; 154(1-3):366-72. PubMed ID: 18037240
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Persulfate oxidation regeneration of granular activated carbon: reversible impacts on sorption behavior.
    Hutson A; Ko S; Huling SG
    Chemosphere; 2012 Nov; 89(10):1218-23. PubMed ID: 22921651
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fenton's oxidation of MTBE with zero-valent iron.
    Bergendahl JA; Thies TP
    Water Res; 2004 Jan; 38(2):327-34. PubMed ID: 14675644
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Degradation of methyl tertiary-butyl ether (MTBE) by anodic Fenton treatment.
    Hong S; Zhang H; Duttweiler CM; Lemley AT
    J Hazard Mater; 2007 Jun; 144(1-2):29-40. PubMed ID: 17254704
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of temperature and acidic pre-treatment on Fenton-driven oxidation of MTBE-spent granular activated carbon.
    Kan E; Huling SG
    Environ Sci Technol; 2009 Mar; 43(5):1493-9. PubMed ID: 19350925
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical oxidative degradation of methyl tert-butyl ether in aqueous solution by Fenton's reagent.
    Xu XR; Zhao ZY; Li XY; Gu JD
    Chemosphere; 2004 Apr; 55(1):73-9. PubMed ID: 14720549
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidation kinetics and effect of pH on the degradation of MTBE with Fenton reagent.
    Burbano AA; Dionysiou DD; Suidan MT; Richardson TL
    Water Res; 2005 Jan; 39(1):107-18. PubMed ID: 15607170
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical destruction of MTBE using Fenton's reagent: effect of ferrous iron/hydrogen peroxide ratio.
    Burbano A; Dionysiou D; Suidan M; Richardson T
    Water Sci Technol; 2003; 47(9):165-71. PubMed ID: 12830956
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of oxidant-to-substrate ratios on the degradation of MTBE with Fenton reagent.
    Burbano AA; Dionysiou DD; Suidan MT
    Water Res; 2008 Jun; 42(12):3225-39. PubMed ID: 18468654
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of inorganic ions on MTBE degradation by Fenton's reagent.
    Siedlecka EM; Wieckowska A; Stepnowski P
    J Hazard Mater; 2007 Aug; 147(1-2):497-502. PubMed ID: 17383092
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regeneration of granular activated carbon with adsorbed trichloroethylene using wet peroxide oxidation.
    Okawa K; Suzuki K; Takeshita T; Nakano K
    Water Res; 2007 Mar; 41(5):1045-51. PubMed ID: 17224174
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In-situ regeneration of saturated granular activated carbon by an iron oxide nanocatalyst.
    Chiu CA; Hristovski K; Huling S; Westerhoff P
    Water Res; 2013 Mar; 47(4):1596-603. PubMed ID: 23298638
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of mesopores in MTBE removal with granular activated carbon.
    Redding AM; Cannon FS
    Water Res; 2014 Jun; 56():214-24. PubMed ID: 24681276
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Treatment of MTBE by air stripping, carbon adsorption, and advanced oxidation: technical and economic comparison for five groundwaters.
    Sutherland J; Adams C; Kekobad J
    Water Res; 2004 Jan; 38(1):193-205. PubMed ID: 14630117
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fenton-like degradation of MTBE: Effects of iron counter anion and radical scavengers.
    Hwang S; Huling SG; Ko S
    Chemosphere; 2010 Jan; 78(5):563-8. PubMed ID: 19959205
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.