BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 15885739)

  • 1. Contaminated sediments and bioassay responses of three macroinvertebrates, the midge larva Chironomus riparius, the water louse Asellus aquaticus and the mayfly nymph Ephoron virgo.
    De Lange HJ; De Haas EM; Maas H; Peeters ET
    Chemosphere; 2005 Dec; 61(11):1700-9. PubMed ID: 15885739
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Responses of benthic invertebrates to combined toxicant and food input in floodplain lake sediments.
    de Haas EM; Reuvers B; Moermond CT; Koelmans AA; Kraak MH
    Environ Toxicol Chem; 2002 Oct; 21(10):2165-71. PubMed ID: 12371493
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ and laboratory bioassays with Chironomus riparius larvae to assess toxicity of metal contamination in rivers: the relative toxic effect of sediment versus water contamination.
    Faria MS; Lopes RJ; Nogueira AJ; Soares AM
    Environ Toxicol Chem; 2007 Sep; 26(9):1968-77. PubMed ID: 17702539
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toxicity of freshwater sediments in the vicinity of an old sawmill: application of three bioassays.
    Lyytikäinen M; Sormunen A; Ristola T; Juvonen R; Kukkonen JV
    Arch Environ Contam Toxicol; 2001 Apr; 40(3):318-26. PubMed ID: 11443361
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biological and functional responses of in situ bioassays with Chironomus riparius larvae to assess river water quality and contamination.
    Faria MS; Ré A; Malcato J; Silva PC; Pestana J; Agra AR; Nogueira AJ; Soares AM
    Sci Total Environ; 2006 Dec; 371(1-3):125-37. PubMed ID: 17027910
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Species-specific responses of two benthic invertebrates explain their distribution along environmental gradients in freshwater habitats.
    de Haas EM; Kraak MH
    Sci Total Environ; 2008 Dec; 406(3):430-5. PubMed ID: 18620736
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exposure of Chironomus riparius larvae to uranium: effects on survival, development time, growth, and mouthpart deformities.
    Dias V; Vasseur C; Bonzom JM
    Chemosphere; 2008 Mar; 71(3):574-81. PubMed ID: 17996273
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of uranium-contaminated sediments on the bioturbation activity of Chironomus riparius larvae (Insecta, Diptera) and Tubifex tubifex worms (Annelida, Tubificidae).
    Lagauzère S; Boyer P; Stora G; Bonzom JM
    Chemosphere; 2009 Jul; 76(3):324-34. PubMed ID: 19403158
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Responses in sediment bioassays used in the Netherlands: can observed toxicity be explained by routinely monitored priority pollutants?
    Lahr J; Maas-Diepeveen JL; Stuijfzand SC; Leonards PE; Drüke JM; Lücker S; Espeldoorn A; Kerkum LC; van Stee LL; Hendriks AJ
    Water Res; 2003 Apr; 37(8):1691-710. PubMed ID: 12697214
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The use of Chironomus riparius larvae to assess effects of pesticides from rice fields in adjacent freshwater ecosystems.
    Faria MS; Nogueira AJ; Soares AM
    Ecotoxicol Environ Saf; 2007 Jun; 67(2):218-26. PubMed ID: 17223193
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Applying adult emergence as an endpoint in a post-exposure laboratory test using two midge species (Diptera: Chironomidae).
    Leppänen MT; Ristola T; Johnson J; Burton GA
    Chemosphere; 2006 Sep; 64(10):1667-74. PubMed ID: 16497356
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Body residues: a key variable to analyze toxicity tests with Chironomus riparius exposed to copper-spiked sediments.
    Péry AR; Béthune A; Gahou J; Mons R; Garric J
    Ecotoxicol Environ Saf; 2005 Jun; 61(2):160-7. PubMed ID: 15883089
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combined effects of copper and food on the midge Chironomus riparius in whole-sediment bioassays.
    de Haas EM; Léon Paumen M; Koelmans AA; Kraak MH
    Environ Pollut; 2004; 127(1):99-107. PubMed ID: 14553999
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The use of chironomid deformation in an in situ test for sediment toxicity.
    Meregalli G; Vermeulen AC; Ollevier F
    Ecotoxicol Environ Saf; 2000 Nov; 47(3):231-8. PubMed ID: 11139175
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Feeding activity of midge larvae (Chironomus riparius meigen) in metal-polluted river sediments.
    Leppänen MT; Postma JF; Groenendijk D; Kukkonen JV; Buckert-de Jong MC
    Ecotoxicol Environ Saf; 1998 Nov; 41(3):251-7. PubMed ID: 9799576
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A short-term sublethal in situ sediment assay with Chironomus riparius based on postexposure feeding.
    Soares S; Cativa I; Moreira-Santos M; Soares AM; Ribeiro R
    Arch Environ Contam Toxicol; 2005 Aug; 49(2):163-72. PubMed ID: 16001149
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of simulated CO₂ escape from sediments on the development of midge Chironomus riparius.
    Khosrovyan A; DelValls TA; Riba I
    Aquat Toxicol; 2014 Nov; 156():230-9. PubMed ID: 25265051
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enlarging the Arsenal of Test Species for Sediment Quality Assessment.
    Wieringa N; Droge STJ; Bakker AM; Melkert RA; Prast BJ; Verdonschot PFM; Kraak MHS
    Bull Environ Contam Toxicol; 2023 Feb; 110(2):55. PubMed ID: 36790477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical analysis and sediment toxicity bioassays to assess the contamination of the River Lambro (Northern Italy).
    Bettinetti R; Giarei C; Provini A
    Arch Environ Contam Toxicol; 2003 Jul; 45(1):72-8. PubMed ID: 12948175
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ bioassay chambers and procedures for assessment of sediment toxicity with Chironomus riparius.
    Castro BB; Guilhermino L; Ribeiro R
    Environ Pollut; 2003; 125(3):325-35. PubMed ID: 12826410
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.