BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 15886883)

  • 1. Stem/progenitor cells in mouse mammary gland development and breast cancer.
    Li Y; Rosen JM
    J Mammary Gland Biol Neoplasia; 2005 Jan; 10(1):17-24. PubMed ID: 15886883
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence that transgenes encoding components of the Wnt signaling pathway preferentially induce mammary cancers from progenitor cells.
    Li Y; Welm B; Podsypanina K; Huang S; Chamorro M; Zhang X; Rowlands T; Egeblad M; Cowin P; Werb Z; Tan LK; Rosen JM; Varmus HE
    Proc Natl Acad Sci U S A; 2003 Dec; 100(26):15853-8. PubMed ID: 14668450
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wnt signaling, stem cells, and the cellular origin of breast cancer.
    Lindvall C; Bu W; Williams BO; Li Y
    Stem Cell Rev; 2007 Jun; 3(2):157-68. PubMed ID: 17873348
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcription factor regulatory networks in mammary epithelial development and tumorigenesis.
    Siegel PM; Muller WJ
    Oncogene; 2010 May; 29(19):2753-9. PubMed ID: 20348953
    [TBL] [Abstract][Full Text] [Related]  

  • 5. IGF1R constitutive activation expands luminal progenitors and influences lineage differentiation during breast tumorigenesis.
    Farabaugh SM; Litzenburger BC; Elangovan A; Pecar G; Walheim L; Atkinson JM; Lee AV
    Dev Biol; 2020 Jul; 463(1):77-87. PubMed ID: 32376245
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stem Cells and the Differentiation Hierarchy in Mammary Gland Development.
    Fu NY; Nolan E; Lindeman GJ; Visvader JE
    Physiol Rev; 2020 Apr; 100(2):489-523. PubMed ID: 31539305
    [TBL] [Abstract][Full Text] [Related]  

  • 7. WNT/beta-catenin mediates radiation resistance of mouse mammary progenitor cells.
    Woodward WA; Chen MS; Behbod F; Alfaro MP; Buchholz TA; Rosen JM
    Proc Natl Acad Sci U S A; 2007 Jan; 104(2):618-23. PubMed ID: 17202265
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mammary stem cells and progenitors: targeting the roots of breast cancer for prevention.
    Tharmapalan P; Mahendralingam M; Berman HK; Khokha R
    EMBO J; 2019 Jul; 38(14):e100852. PubMed ID: 31267556
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Delineating the epithelial hierarchy in the mouse mammary gland.
    Asselin-Labat ML; Vaillant F; Shackleton M; Bouras T; Lindeman GJ; Visvader JE
    Cold Spring Harb Symp Quant Biol; 2008; 73():469-78. PubMed ID: 19022771
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The mammary stem cell hierarchy: a looking glass into heterogeneous breast cancer landscapes.
    Sreekumar A; Roarty K; Rosen JM
    Endocr Relat Cancer; 2015 Dec; 22(6):T161-76. PubMed ID: 26206777
    [TBL] [Abstract][Full Text] [Related]  

  • 11. c-Kit is required for growth and survival of the cells of origin of Brca1-mutation-associated breast cancer.
    Regan JL; Kendrick H; Magnay FA; Vafaizadeh V; Groner B; Smalley MJ
    Oncogene; 2012 Feb; 31(7):869-83. PubMed ID: 21765473
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mammary gland stem cells and their application in breast cancer.
    Yang X; Wang H; Jiao B
    Oncotarget; 2017 Feb; 8(6):10675-10691. PubMed ID: 27793013
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stem cells in breast epithelia.
    Li P; Barraclough R; Fernig DG; Smith JA; Rudland PS
    Int J Exp Pathol; 1998 Aug; 79(4):193-206. PubMed ID: 9797716
    [TBL] [Abstract][Full Text] [Related]  

  • 14. p130Cas as a new regulator of mammary epithelial cell proliferation, survival, and HER2-neu oncogene-dependent breast tumorigenesis.
    Cabodi S; Tinnirello A; Di Stefano P; Bisarò B; Ambrosino E; Castellano I; Sapino A; Arisio R; Cavallo F; Forni G; Glukhova M; Silengo L; Altruda F; Turco E; Tarone G; Defilippi P
    Cancer Res; 2006 May; 66(9):4672-80. PubMed ID: 16651418
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The transcription factor ATF3 acts as an oncogene in mouse mammary tumorigenesis.
    Wang A; Arantes S; Yan L; Kiguchi K; McArthur MJ; Sahin A; Thames HD; Aldaz CM; Macleod MC
    BMC Cancer; 2008 Sep; 8():268. PubMed ID: 18808719
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Atypical cell cycle regulation promotes mammary stem cell expansion during mammary development and tumourigenesis.
    Fifield BA; Vusich J; Haberfellner E; Andrechek ER; Porter LA
    Breast Cancer Res; 2024 Jun; 26(1):106. PubMed ID: 38943151
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The hyperplastic phenotype in PR-A and PR-B transgenic mice: lessons on the role of estrogen and progesterone receptors in the mouse mammary gland and breast cancer.
    Sampayo R; Recouvreux S; Simian M
    Vitam Horm; 2013; 93():185-201. PubMed ID: 23810007
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Constitutive activation of RANK disrupts mammary cell fate leading to tumorigenesis.
    Pellegrini P; Cordero A; Gallego MI; Dougall WC; Muñoz P; Pujana MA; Gonzalez-Suarez E
    Stem Cells; 2013 Sep; 31(9):1954-65. PubMed ID: 23766243
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Overexpression of EphB4 in the mammary epithelium shifts the differentiation pathway of progenitor cells and promotes branching activity and vascularization.
    Kaenel P; Hahnewald S; Wotzkow C; Strange R; Andres AC
    Dev Growth Differ; 2014 May; 56(4):255-75. PubMed ID: 24635767
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mammary Precancerous Stem and Non-Stem Cells Evolve into Cancers of Distinct Subtypes.
    Bu W; Liu Z; Jiang W; Nagi C; Huang S; Edwards DP; Jo E; Mo Q; Creighton CJ; Hilsenbeck SG; Leavitt AD; Lewis MT; Wong STC; Li Y
    Cancer Res; 2019 Jan; 79(1):61-71. PubMed ID: 30401712
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.