BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 15886908)

  • 1. Constitutive expression of small heat shock protein in an htpG disruptant of the Cyanobacterium Synechococcus sp. PCC 7942.
    Kojima K; Nakamoto H
    Curr Microbiol; 2005 May; 50(5):272-6. PubMed ID: 15886908
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studies on the role of HtpG in the tetrapyrrole biosynthesis pathway of the cyanobacterium Synechococcus elongatus PCC 7942.
    Watanabe S; Kobayashi T; Saito M; Sato M; Nimura-Matsune K; Chibazakura T; Taketani S; Nakamoto H; Yoshikawa H
    Biochem Biophys Res Commun; 2007 Jan; 352(1):36-41. PubMed ID: 17107658
    [TBL] [Abstract][Full Text] [Related]  

  • 3. HtpG, the prokaryotic homologue of Hsp90, stabilizes a phycobilisome protein in the cyanobacterium Synechococcus elongatus PCC 7942.
    Sato T; Minagawa S; Kojima E; Okamoto N; Nakamoto H
    Mol Microbiol; 2010 May; 76(3):576-89. PubMed ID: 20345653
    [TBL] [Abstract][Full Text] [Related]  

  • 4. HtpG is essential for the thermal stress management in cyanobacteria.
    Tanaka N; Nakamoto H
    FEBS Lett; 1999 Sep; 458(2):117-23. PubMed ID: 10481048
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The heat shock gene, htpG, and thermotolerance in the cyanobacterium, Synechocystis sp. PCC 6803.
    Fang F; Barnum SR
    Curr Microbiol; 2003 Oct; 47(4):341-6. PubMed ID: 14629017
    [TBL] [Abstract][Full Text] [Related]  

  • 6. HtpG plays a role in cold acclimation in cyanobacteria.
    Hossain MM; Nakamoto H
    Curr Microbiol; 2002 Apr; 44(4):291-6. PubMed ID: 11910501
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role for the cyanobacterial HtpG in protection from oxidative stress.
    Hossain MM; Nakamoto H
    Curr Microbiol; 2003 Jan; 46(1):70-6. PubMed ID: 12432468
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Light plays a key role in the modulation of heat shock response in the cyanobacterium Synechocystis sp PCC 6803.
    Asadulghani ; Suzuki Y; Nakamoto H
    Biochem Biophys Res Commun; 2003 Jul; 306(4):872-9. PubMed ID: 12821123
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Post-transcriptional control of the cyanobacterial hspA heat-shock induction.
    Kojima K; Nakamoto H
    Biochem Biophys Res Commun; 2005 Jun; 331(2):583-8. PubMed ID: 15850800
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A small heat-shock protein confers stress tolerance and stabilizes thylakoid membrane proteins in cyanobacteria under oxidative stress.
    Sakthivel K; Watanabe T; Nakamoto H
    Arch Microbiol; 2009 Apr; 191(4):319-28. PubMed ID: 19169670
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cyclic lipopeptide antibiotics bind to the N-terminal domain of the prokaryotic Hsp90 to inhibit the chaperone activity.
    Minagawa S; Kondoh Y; Sueoka K; Osada H; Nakamoto H
    Biochem J; 2011 Apr; 435(1):237-46. PubMed ID: 21210767
    [TBL] [Abstract][Full Text] [Related]  

  • 12. HspA and HtpG enhance thermotolerance in the cyanobacterium, Microcystis aeruginosa NIES-298.
    Rhee JS; Ki JS; Kim BM; Hwang SJ; Choi IY; Lee JS
    J Microbiol Biotechnol; 2012 Jan; 22(1):118-25. PubMed ID: 22297228
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction of a small heat shock protein with light-harvesting cyanobacterial phycocyanins under stress conditions.
    Nakamoto H; Honma D
    FEBS Lett; 2006 May; 580(13):3029-34. PubMed ID: 16678174
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physical interaction between bacterial heat shock protein (Hsp) 90 and Hsp70 chaperones mediates their cooperative action to refold denatured proteins.
    Nakamoto H; Fujita K; Ohtaki A; Watanabe S; Narumi S; Maruyama T; Suenaga E; Misono TS; Kumar PK; Goloubinoff P; Yoshikawa H
    J Biol Chem; 2014 Feb; 289(9):6110-9. PubMed ID: 24415765
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification and analysis of a principal sigma factor interacting protein SinA, essential for growth at high temperatures in a cyanobacterium Synechococcus elongatus PCC 7942.
    Hasegawa H; Tsurumaki T; Kobayashi I; Imamura S; Tanaka K
    J Gen Appl Microbiol; 2020 Jun; 66(2):66-72. PubMed ID: 31511444
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The heat shock protein ClpB mediates the development of thermotolerance in the cyanobacterium Synechococcus sp. strain PCC 7942.
    Eriksson MJ; Clarke AK
    J Bacteriol; 1996 Aug; 178(16):4839-46. PubMed ID: 8759846
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conserved two-component Hik34-Rre1 module directly activates heat-stress inducible transcription of major chaperone and other genes in Synechococcus elongatus PCC 7942.
    Kobayashi I; Watanabe S; Kanesaki Y; Shimada T; Yoshikawa H; Tanaka K
    Mol Microbiol; 2017 Apr; 104(2):260-277. PubMed ID: 28106321
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction of the molecular chaperone HtpG with uroporphyrinogen decarboxylase in the cyanobacterium Synechococcus elongatus PCC 7942.
    Saito M; Watanabe S; Yoshikawa H; Nakamoto H
    Biosci Biotechnol Biochem; 2008 May; 72(5):1394-7. PubMed ID: 18460784
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of heat shock on protein synthesis in the cyanobacterium Synechococcus sp. strain PCC 6301.
    Borbély G; Surányi G; Korcz A; Pálfi Z
    J Bacteriol; 1985 Mar; 161(3):1125-30. PubMed ID: 3918983
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The cyanobacterium Synechococcus sp. PCC 7942 possesses a close homologue to the chloroplast ClpC protein of higher plants.
    Clarke AK; Eriksson MJ
    Plant Mol Biol; 1996 Jul; 31(4):721-30. PubMed ID: 8806403
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.