These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 15887034)

  • 1. A cerebral palsy assessment tool using anatomically based geometries and free-form deformation.
    Fernandez JW; Ho A; Walt S; Anderson IA; Hunter PJ
    Biomech Model Mechanobiol; 2005 Aug; 4(1):39-56. PubMed ID: 15887034
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of wavelet analysis of gait in children with typical development and cerebral palsy.
    Lauer RT; Stackhouse C; Shewokis PA; Smith BT; Orlin M; McCarthy JJ
    J Biomech; 2005 Jun; 38(6):1351-7. PubMed ID: 15863120
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An anatomically based patient-specific finite element model of patella articulation: towards a diagnostic tool.
    Fernandez JW; Hunter PJ
    Biomech Model Mechanobiol; 2005 Aug; 4(1):20-38. PubMed ID: 15959816
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gastrocnemius and soleus lengths in cerebral palsy equinus gait--differences between children with and without static contracture and effects of gastrocnemius recession.
    Wren TA; Do KP; Kay RM
    J Biomech; 2004 Sep; 37(9):1321-7. PubMed ID: 15275839
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Do the hamstrings operate at increased muscle-tendon lengths and velocities after surgical lengthening?
    Arnold AS; Liu MQ; Schwartz MH; Ounpuu S; Dias LS; Delp SL
    J Biomech; 2006; 39(8):1498-506. PubMed ID: 15923009
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anatomically based geometric modelling of the musculo-skeletal system and other organs.
    Fernandez JW; Mithraratne P; Thrupp SF; Tawhai MH; Hunter PJ
    Biomech Model Mechanobiol; 2004 Mar; 2(3):139-55. PubMed ID: 14685821
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interpretation of surface EMGs in children with cerebral palsy: An initial study using a fuzzy expert system.
    Schmidt-Rohlfing B; Bergamo F; Williams S; Erli HJ; Rau G; Niethard FU; Disselhorst-Klug C
    J Orthop Res; 2006 Mar; 24(3):438-47. PubMed ID: 16450406
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of a neuro-fuzzy network for gait event detection using electromyography in the child with cerebral palsy.
    Lauer RT; Smith BT; Betz RR
    IEEE Trans Biomed Eng; 2005 Sep; 52(9):1532-40. PubMed ID: 16189966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Support vector machines and other pattern recognition approaches to the diagnosis of cerebral palsy gait.
    Kamruzzaman J; Begg RK
    IEEE Trans Biomed Eng; 2006 Dec; 53(12 Pt 1):2479-90. PubMed ID: 17153205
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A method for quantifying dynamic muscle dysfunction in children and young adults with cerebral palsy.
    Wakeling J; Delaney R; Dudkiewicz I
    Gait Posture; 2007 Apr; 25(4):580-9. PubMed ID: 16876416
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calf muscle-tendon lengths before and after Tendo-Achilles lengthenings and gastrocnemius lengthenings for equinus in cerebral palsy and idiopathic toe walking.
    Jahn J; Vasavada AN; McMulkin ML
    Gait Posture; 2009 Jun; 29(4):612-7. PubMed ID: 19200730
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Harmonic analysis of force platform data in normal and cerebral palsy gait.
    White R; Agouris I; Fletcher E
    Clin Biomech (Bristol, Avon); 2005 Jun; 20(5):508-16. PubMed ID: 15836938
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of the correlation between three methods used in the assessment of children with cerebral palsy.
    Romei M; Galli M; Fazzi E; Maraucci I; Schwartz M; Uggetti C; Crivellini M
    Funct Neurol; 2007; 22(1):17-21. PubMed ID: 17509239
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimation of hamstring length at initial contact based on kinematic gait data.
    Stewart C; Jonkers I; Roberts A
    Gait Posture; 2004 Aug; 20(1):61-6. PubMed ID: 15196522
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanobiological prediction of proximal femoral deformities in children with cerebral palsy.
    Carriero A; Jonkers I; Shefelbine SJ
    Comput Methods Biomech Biomed Engin; 2011 Mar; 14(3):253-62. PubMed ID: 20229379
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Distal rectus femoris tendon transfer in cerebral palsy patients].
    Ostádal M; Chomiak J; Dungl P; Adamec O
    Acta Chir Orthop Traumatol Cech; 2007 Dec; 74(6):388-91. PubMed ID: 18198088
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Muscle synergy analysis in children with cerebral palsy.
    Tang L; Li F; Cao S; Zhang X; Wu D; Chen X
    J Neural Eng; 2015 Aug; 12(4):046017. PubMed ID: 26061115
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Walking speed modifies spasticity effects in gastrocnemius and soleus in cerebral palsy gait.
    van der Krogt MM; Doorenbosch CA; Becher JG; Harlaar J
    Clin Biomech (Bristol, Avon); 2009 Jun; 24(5):422-8. PubMed ID: 19349103
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulating pathological gait using the enhanced linear inverted pendulum model.
    Komura T; Nagano A; Leung H; Shinagawa Y
    IEEE Trans Biomed Eng; 2005 Sep; 52(9):1502-13. PubMed ID: 16189963
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relationship of spasticity to knee angular velocity and motion during gait in cerebral palsy.
    Damiano DL; Laws E; Carmines DV; Abel MF
    Gait Posture; 2006 Jan; 23(1):1-8. PubMed ID: 16311188
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.