These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 15887526)

  • 1. A mathematical analysis of SFAP convolutional models.
    Falces JR; Trigueros AM; Useros LG; Carreño IR; Irujo JN
    IEEE Trans Biomed Eng; 2005 May; 52(5):769-83. PubMed ID: 15887526
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modelling fibrillation potentials--analysis of time parameters in the muscle intracellular action potential.
    Rodríguez Falces J; Trigueros AM; Useros LG; Carreño IR; Irujo JN
    IEEE Trans Biomed Eng; 2007 Aug; 54(8):1361-70. PubMed ID: 17694856
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling fibrillation potentials--a new analytical description for the muscle intracellular action potential.
    Rodríguez Falces J; Malanda Trigueros A; Gila Useros L; Rodríguez Carreño I; Navallas Irujo J
    IEEE Trans Biomed Eng; 2006 Apr; 53(4):581-92. PubMed ID: 16602564
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of motor unit conduction velocity from surface EMG recordings by signal-based selection of the spatial filters.
    Mesin L; Tizzani F; Farina D
    IEEE Trans Biomed Eng; 2006 Oct; 53(10):1963-71. PubMed ID: 17019860
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single motor unit F-waves in the thenar muscles studied by the multichannel surface EMG.
    Yamada M; Nakazawa T; Kyoso M; Ishijima M
    Electromyogr Clin Neurophysiol; 2007; 47(1):43-7. PubMed ID: 17375881
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel ideas for fast muscle action potential simulations using the line source model.
    Hammarberg B; Stålberg E
    IEEE Trans Biomed Eng; 2004 Nov; 51(11):1888-97. PubMed ID: 15543667
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The morphology of single muscle fibre potentials - Part I: simulation study of the distortion introduced by the distant-interfering potentials.
    Rodriguez-Falces J; Gila L; Dimitrova NA
    J Electromyogr Kinesiol; 2013 Feb; 23(1):14-23. PubMed ID: 22863372
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The morphology of single muscle fibre potentials - Part II: experimental findings.
    Rodriguez-Falces J; Gila L; Dimitrova NA
    J Electromyogr Kinesiol; 2013 Feb; 23(1):24-32. PubMed ID: 22868038
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insight into the motor unit activation and structure properties gained from EMG signal analysis.
    Zalewska E
    Clin Neurophysiol; 2009 Mar; 120(3):449-50. PubMed ID: 19243991
    [No Abstract]   [Full Text] [Related]  

  • 10. Estimation of average muscle fiber conduction velocity from simulated surface EMG in pinnate muscles.
    Mesin L; Damiano L; Farina D
    J Neurosci Methods; 2007 Mar; 160(2):327-34. PubMed ID: 17070925
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The single nerve fiber action potential and the filter bank--a modeling approach.
    Struijk LN; Akay M; Struijk JJ
    IEEE Trans Biomed Eng; 2008 Jan; 55(1):372-5. PubMed ID: 18232387
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The contribution of motor unit pairs to the correlation functions computed from surface myoelectric signals.
    González-Cueto JA; Erim Z
    IEEE Trans Biomed Eng; 2005 Nov; 52(11):1846-50. PubMed ID: 16285388
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification Procedure in a model of single fibre action potential--part I: estimation of fibre diameter and radial distance.
    Rodríguez-Falces J; Malanda A; Gila L; Rodríguez I; Navallas J
    J Electromyogr Kinesiol; 2010 Apr; 20(2):264-73. PubMed ID: 19349197
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Safety factor for neuromuscular transmission at type-identified diaphragm fibers.
    Ermilov LG; Mantilla CB; Rowley KL; Sieck GC
    Muscle Nerve; 2007 Jun; 35(6):800-3. PubMed ID: 17286272
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification procedure in a model of single fibre action potential--part II: global approach and experimental results.
    Rodríguez-Falces J; Malanda A; Gila L; Rodríguez I; Navallas J
    J Electromyogr Kinesiol; 2010 Apr; 20(2):274-83. PubMed ID: 19359197
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A technique to track individual motor unit action potentials in surface EMG by monitoring their conduction velocities and amplitudes.
    Beck RB; Houtman CJ; O'Malley MJ; Lowery MM; Stegeman DF
    IEEE Trans Biomed Eng; 2005 Apr; 52(4):622-9. PubMed ID: 15825864
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of muscle-fiber velocity recovery function on motor unit action potential properties in voluntary contractions.
    Farina D; Falla D
    Muscle Nerve; 2008 May; 37(5):650-8. PubMed ID: 18085714
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of extracellular potassium accumulation on muscle fiber conduction velocity: a simulation study.
    Fortune E; Lowery MM
    Ann Biomed Eng; 2009 Oct; 37(10):2105-17. PubMed ID: 19588250
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A model of the magnetic fields created by single motor unit compound action potentials in skeletal muscle.
    Parker KK; Wikswo JP
    IEEE Trans Biomed Eng; 1997 Oct; 44(10):948-57. PubMed ID: 9311164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decrement in area of muscle responses to repetitive nerve stimulation.
    Lo YL; Dan YF; Leoh TH; Tan YE; Ratnagopal P
    Muscle Nerve; 2003 Apr; 27(4):494-6. PubMed ID: 12661052
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.