These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 15887657)

  • 1. The influence of cellular seeding density in the microencapsulation of hybridoma cells.
    Arús L; Orive G; Hernández R; Rodriguez A; Rojas A; Pedraz JL
    J Biomater Sci Polym Ed; 2005; 16(4):521-9. PubMed ID: 15887657
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microencapsulation of an anti-VE-cadherin antibody secreting 1B5 hybridoma cells.
    Orive G; Hernández RM; Gascón AR; Igartua M; Rojas A; Pedraz JL
    Biotechnol Bioeng; 2001 Dec; 76(4):285-94. PubMed ID: 11745155
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Study on cytomedicine of alginate-poly(L) lysine-alginate microencapsulated hybridoma cells].
    Zhao DJ; Jin Y; Fu HX; Chen P
    Yao Xue Xue Bao; 2004 Aug; 39(8):635-9. PubMed ID: 15563068
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A basic study on the hybridoma cell culture of microencapsulation.
    Ning G; Qian J; Guo M
    Chin J Biotechnol; 1992; 8(2):131-7. PubMed ID: 1297442
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microencapsulated Cells for Cancer Therapy.
    Saenz del Burgo L; Ciriza J; Hernández RM; Orive G; Pedraz JL
    Methods Mol Biol; 2017; 1479():261-272. PubMed ID: 27738943
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Emulsion strategies in the microencapsulation of cells: pathways to thin coherent membranes.
    Leung A; Ramaswamy Y; Munro P; Lawrie G; Nielsen L; Trau M
    Biotechnol Bioeng; 2005 Oct; 92(1):45-53. PubMed ID: 15986491
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production of monoclonal antibodies against human chorionic gonadotropin by hybridoma cultures in calcium alginate capsules.
    Oh DJ; Choi SK; Chang HN; Choe TB
    Cytotechnology; 1993; 13(1):41-9. PubMed ID: 7764606
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Survival of different cell lines in alginate-agarose microcapsules.
    Orive G; Hernández RM; Gascón AR; Igartua M; Pedraz JL
    Eur J Pharm Sci; 2003 Jan; 18(1):23-30. PubMed ID: 12554069
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prolongation of the effective duration of cytomedical therapy by re-injecting SK2 hybridoma cells microencapsulated within alginate-poly(L)lysine-alginate membranes into human interleukin-6 transgenic mice.
    Miyamoto H; Okada N; Yoshioka T; Suzuki R; Sakamoto K; Katsume A; Saito H; Tsutsumi Y; Kubo K; Nakagawa S; Ohsugi Y; Mayumi T
    Biol Pharm Bull; 1999 Mar; 22(3):295-7. PubMed ID: 10220287
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cytomedical therapy for IgG1 plasmacytosis in human interleukin-6 transgenic mice using hybridoma cells microencapsulated in alginate-poly(L)lysine-alginate membrane.
    Okada N; Miyamoto H; Yoshioka T; Katsume A; Saito H; Yorozu K; Ueda O; Itoh N; Mizuguchi H; Nakagawa S; Ohsugi Y; Mayumi T
    Biochim Biophys Acta; 1997 Feb; 1360(1):53-63. PubMed ID: 9061040
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Field Effect Microparticle Generation for Cell Microencapsulation.
    Hsu BR; Fu SH
    Methods Mol Biol; 2017; 1479():57-70. PubMed ID: 27738926
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immunological studies of SK2 hybridoma cells microencapsulated with alginate-poly(L)lysine-alginate (APA) membrane following allogeneic transplantation.
    Okada N; Miyamoto H; Yoshioka T; Sakamoto K; Katsume A; Saito H; Nakagawa S; Ohsugi Y; Mayumi T
    Biochem Biophys Res Commun; 1997 Jan; 230(3):524-7. PubMed ID: 9015354
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polymeric Materials for Cell Microencapsulation.
    Aijaz A; Perera D; Olabisi RM
    Methods Mol Biol; 2017; 1479():79-93. PubMed ID: 27738928
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of cellulose sulfate-based polyelectrolyte complex microcapsules for medical applications.
    Dautzenberg H; Schuldt U; Grasnick G; Karle P; Müller P; Löhr M; Pelegrin M; Piechaczyk M; Rombs KV; Günzburg WH; Salmons B; Saller RM
    Ann N Y Acad Sci; 1999 Jun; 875():46-63. PubMed ID: 10415557
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of a novel bile acid-based delivery platform for microencapsulated pancreatic β-cells.
    Mooranian A; Negrulj R; Arfuso F; Al-Salami H
    Artif Cells Nanomed Biotechnol; 2016; 44(1):194-200. PubMed ID: 25014218
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of modified alginate-poly-L-lysine microcapsules.
    Lee CS; Chu IM
    Artif Organs; 1997 Sep; 21(9):1002-6. PubMed ID: 9288871
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alginate as an immobilization material for MAb production via encapsulated hybridoma cells.
    Selimoglu SM; Elibol M
    Crit Rev Biotechnol; 2010 Jun; 30(2):145-59. PubMed ID: 20210690
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of alginate-ε-poly-L-lysine microcapsules for cell microencapsulation.
    Ma Y; Zhang Y; Liu Y; Chen L; Li S; Zhao W; Sun G; Li N; Wang Y; Guo X; Lv G; Ma X
    J Biomed Mater Res A; 2013 May; 101(5):1265-73. PubMed ID: 23065714
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An understanding of potential and limitations of alginate/PLL microcapsules as a cell retention system for perfusion cultures.
    Demont A; Cole H; Marison IW
    J Microencapsul; 2016 Feb; 33(1):80-8. PubMed ID: 26754597
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of two types of alginate microcapsules on stability and biocompatibility in vitro and in vivo.
    Li HB; Jiang H; Wang CY; Duan CM; Ye Y; Su XP; Kong QX; Wu JF; Guo XM
    Biomed Mater; 2006 Mar; 1(1):42-7. PubMed ID: 18458385
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.