These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 1588776)

  • 1. Development of an above-knee prosthesis equipped with a microcomputer-controlled knee joint: first test results.
    Aeyels B; Peeraer L; Vander Sloten J; Van der Perre G
    J Biomed Eng; 1992 May; 14(3):199-202. PubMed ID: 1588776
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptive microcomputer control of an artificial knee in level walking.
    Bar A; Ishai G; Meretsky P; Koren Y
    J Biomed Eng; 1983 Apr; 5(2):145-50. PubMed ID: 6855215
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of transfemoral amputees using a passive microprocessor-controlled knee versus an active powered microprocessor-controlled knee for level walking.
    Creylman V; Knippels I; Janssen P; Biesbrouck E; Lechler K; Peeraer L
    Biomed Eng Online; 2016 Dec; 15(Suppl 3):142. PubMed ID: 28105945
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An above-knee prosthesis with a system of energy recovery: a technical note.
    Farber BS; Jacobson JS
    J Rehabil Res Dev; 1995 Nov; 32(4):337-48. PubMed ID: 8770798
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bouncy knee: a stance phase flex-extend knee unit.
    Fisher LD; Judge GW
    Prosthet Orthot Int; 1985 Dec; 9(3):129-36. PubMed ID: 3911165
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Biomechanics and evaluation of the microprocessor-controlled C-Leg exoprosthesis knee joint].
    Stinus H
    Z Orthop Ihre Grenzgeb; 2000; 138(3):278-82. PubMed ID: 10929622
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of a stance phase microprocessor-controlled knee prosthesis on level walking in lower functioning individuals with a transfemoral amputation.
    Eberly VJ; Mulroy SJ; Gronley JK; Perry J; Yule WJ; Burnfield JM
    Prosthet Orthot Int; 2014 Dec; 38(6):447-55. PubMed ID: 24135259
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Designs and performance of three new microprocessor-controlled knee joints.
    Thiele J; Schöllig C; Bellmann M; Kraft M
    Biomed Tech (Berl); 2019 Feb; 64(1):119-126. PubMed ID: 29425102
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of EMG-based mode and intent recognition algorithms for a computer-controlled above-knee prosthesis.
    Peeraer L; Aeyels B; Van der Perre G
    J Biomed Eng; 1990 May; 12(3):178-82. PubMed ID: 2348704
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance assessment of the Terry Fox jogging prosthesis for above-knee amputees.
    DiAngelo DJ; Winter DA; Ghista DN; Newcombe WR
    J Biomech; 1989; 22(6-7):543-58. PubMed ID: 2808440
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparative evaluation of the Adaptive knee and Catech knee joints: a preliminary study.
    Jepson F; Datta D; Harris I; Heller B; Howitt J; McLean J
    Prosthet Orthot Int; 2008 Mar; 32(1):84-92. PubMed ID: 18330807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and quantitative evaluation of a stance-phase controlled prosthetic knee joint for children.
    Andrysek J; Naumann S; Cleghorn WL
    IEEE Trans Neural Syst Rehabil Eng; 2005 Dec; 13(4):437-43. PubMed ID: 16425824
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Powered ankle-foot prosthesis to assist level-ground and stair-descent gaits.
    Au S; Berniker M; Herr H
    Neural Netw; 2008 May; 21(4):654-66. PubMed ID: 18499394
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and energetic evaluation of a prosthetic knee joint actuator with a lockable parallel spring.
    Geeroms J; Flynn L; Jimenez-Fabian R; Vanderborght B; Lefeber D
    Bioinspir Biomim; 2017 Feb; 12(2):026002. PubMed ID: 28059775
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and functional evaluation of a quasi-passive compliant stance control knee-ankle-foot orthosis.
    Shamaei K; Napolitano PC; Dollar AM
    IEEE Trans Neural Syst Rehabil Eng; 2014 Mar; 22(2):258-68. PubMed ID: 24608684
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Dynamic loads at knee joint of trans-tibial amputee on different terrains].
    Jia X; Zhang M; Fan Y; Wang R
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2005 Apr; 22(2):221-4. PubMed ID: 15884522
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of prosthetic mass distribution on the spatiotemporal characteristics and knee kinematics of transfemoral amputee locomotion.
    Hekmatfard M; Farahmand F; Ebrahimi I
    Gait Posture; 2013 Jan; 37(1):78-81. PubMed ID: 22832472
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional added value of microprocessor-controlled knee joints in daily life performance of Medicare Functional Classification Level-2 amputees.
    Theeven P; Hemmen B; Rings F; Meys G; Brink P; Smeets R; Seelen H
    J Rehabil Med; 2011 Oct; 43(10):906-15. PubMed ID: 21947182
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The comparison of transfemoral amputees using mechanical and microprocessor- controlled prosthetic knee under different walking speeds: A randomized cross-over trial.
    Cao W; Yu H; Zhao W; Meng Q; Chen W
    Technol Health Care; 2018; 26(4):581-592. PubMed ID: 29710741
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gait and balance of transfemoral amputees using passive mechanical and microprocessor-controlled prosthetic knees.
    Kaufman KR; Levine JA; Brey RH; Iverson BK; McCrady SK; Padgett DJ; Joyner MJ
    Gait Posture; 2007 Oct; 26(4):489-93. PubMed ID: 17869114
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.