BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 15888291)

  • 1. Leishmania chagasi: the alpha-tubulin intercoding region results in constant levels of mRNA abundance despite protein synthesis inhibition and growth state.
    Purdy JE; Donelson JE; Wilson ME
    Exp Parasitol; 2005 Jun; 110(2):102-7. PubMed ID: 15888291
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of genes encoding the major surface protease of Leishmania chagasi via mRNA stability.
    Purdy JE; Donelson JE; Wilson ME
    Mol Biochem Parasitol; 2005 Jul; 142(1):88-97. PubMed ID: 15876463
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of genetic elements regulating the methionine adenosyltransferase gene in Leishmania infantum.
    García-Estrada C; Pérez-Pertejo Y; Ordóñez D; Balaña-Fouce R; Reguera RM
    Gene; 2007 Mar; 389(2):163-73. PubMed ID: 17196769
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control mechanisms of tubulin gene expression in Trypanosoma cruzi.
    da Silva RA; Bartholomeu DC; Teixeira SM
    Int J Parasitol; 2006 Jan; 36(1):87-96. PubMed ID: 16233898
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The expression of HSP83 genes in Leishmania infantum is affected by temperature and by stage-differentiation and is regulated at the levels of mRNA stability and translation.
    Larreta R; Soto M; Quijada L; Folgueira C; Abanades DR; Alonso C; Requena JM
    BMC Mol Biol; 2004 Jun; 5():3. PubMed ID: 15176985
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Independent mechanisms are utilized for the coordinate and transient accumulation of two differentiation-specific mRNAs during differentiation of Naegleria gruberi amoebae into flagellates.
    Bok J; Jin Y; Lee J
    Exp Cell Res; 1995 Jul; 219(1):47-53. PubMed ID: 7628549
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of the 5' region of the Leishmania infantum LORIEN/MAT2 gene cluster and role of LORIEN flanking regions in post-transcriptional regulation.
    García-Estrada C; Pérez-Pertejo Y; Ordóñez D; Balaña-Fouce R; Reguera RM
    Biochimie; 2008 Sep; 90(9):1325-36. PubMed ID: 18420039
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cell-cycle-dependent translation of histone mRNAs is the key control point for regulation of histone biosynthesis in Leishmania infantum.
    Soto M; Iborra S; Quijada L; Folgueira C; Alonso C; Requena JM
    Biochem J; 2004 May; 379(Pt 3):617-25. PubMed ID: 14766017
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A combined proteomic and transcriptomic approach to the study of stage differentiation in Leishmania infantum.
    McNicoll F; Drummelsmith J; Müller M; Madore E; Boilard N; Ouellette M; Papadopoulou B
    Proteomics; 2006 Jun; 6(12):3567-81. PubMed ID: 16705753
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Leishmania pifanoi: kinetics of messenger RNA expression during amastigote to promastigote transformation in vitro.
    Campbell SM; Rainey PM
    Exp Parasitol; 1993 Aug; 77(1):1-12. PubMed ID: 8344399
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Leishmania mexicana: identification of genes that are preferentially expressed in amastigotes.
    Bellatin JA; Murray AS; Zhao M; McMaster WR
    Exp Parasitol; 2002 Jan; 100(1):44-53. PubMed ID: 11971653
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intergenic regions between tandem gp63 genes influence the differential expression of gp63 RNAs in Leishmania chagasi promastigotes.
    Ramamoorthy R; Swihart KG; McCoy JJ; Wilson ME; Donelson JE
    J Biol Chem; 1995 May; 270(20):12133-9. PubMed ID: 7744862
    [TBL] [Abstract][Full Text] [Related]  

  • 13. S-adenosylmethionine synthesis in Leishmania infantum promastigotes.
    Reguera RM; Pérez-Pertejo Y; Ordóñez C; Cubría JC; Tekwani BL; Balaña-Fouce R; Ordóñez D
    Cell Biol Int; 1999; 23(8):579-83. PubMed ID: 10704242
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tubulin mRNA instability and stabilization by protein synthesis inhibitors are reproducible in nontranslating extracts from Chlamydomonas.
    Baker EJ
    Dev Genet; 1993; 14(6):460-70. PubMed ID: 8111974
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteome profiling of Leishmania infantum promastigotes.
    Alcolea PJ; Alonso A; Larraga V
    J Eukaryot Microbiol; 2011; 58(4):352-8. PubMed ID: 21569158
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic complementation to identify DNA elements that influence complement resistance in Leishmania chagasi.
    Dahlin-Laborde RR; Yu TP; Beetham JK
    J Parasitol; 2005 Oct; 91(5):1058-63. PubMed ID: 16419749
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Internal and surface subpopulations of the major surface protease (MSP) of Leishmania chagasi.
    Yao C; Luo J; Hsiao C; Donelson JE; Wilson ME
    Mol Biochem Parasitol; 2005 Feb; 139(2):173-83. PubMed ID: 15664652
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Leishmania donovani: characterization and expression of ORFF, a gene amplified from the LDI locus.
    Ghosh A; Madhubala R; Myler PJ; Stuart KD
    Exp Parasitol; 1999 Dec; 93(4):225-30. PubMed ID: 10600448
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glycoprotein 46 mRNA abundance is post-transcriptionally regulated during development of Leishmania chagasi promastigotes to an infectious form.
    Beetham JK; Myung KS; McCoy JJ; Wilson ME; Donelson JE
    J Biol Chem; 1997 Jul; 272(28):17360-6. PubMed ID: 9211875
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of GP63 mRNA stability in promastigotes of virulent and attenuated Leishmania chagasi.
    Brittingham A; Miller MA; Donelson JE; Wilson ME
    Mol Biochem Parasitol; 2001 Jan; 112(1):51-9. PubMed ID: 11166386
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.