These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
245 related articles for article (PubMed ID: 1588910)
1. Regulation of the Bacillus subtilis W23 xylose utilization operon: interaction of the Xyl repressor with the xyl operator and the inducer xylose. Gärtner D; Degenkolb J; Ripperger JA; Allmansberger R; Hillen W Mol Gen Genet; 1992 Apr; 232(3):415-22. PubMed ID: 1588910 [TBL] [Abstract][Full Text] [Related]
2. Regulation of xylose utilization in Bacillus licheniformis: Xyl repressor-xyl-operator interaction studied by DNA modification protection and interference. Scheler A; Hillen W Mol Microbiol; 1994 Aug; 13(3):505-12. PubMed ID: 7997167 [TBL] [Abstract][Full Text] [Related]
3. Transcription of the xyl operon is controlled in Bacillus subtilis by tandem overlapping operators spaced by four base-pairs. Dahl MK; Degenkolb J; Hillen W J Mol Biol; 1994 Oct; 243(3):413-24. PubMed ID: 7966270 [TBL] [Abstract][Full Text] [Related]
4. Identification and sequence analysis of the Bacillus subtilis W23 xylR gene and xyl operator. Kreuzer P; Gärtner D; Allmansberger R; Hillen W J Bacteriol; 1989 Jul; 171(7):3840-5. PubMed ID: 2544559 [TBL] [Abstract][Full Text] [Related]
5. Expression of the Bacillus subtilis xyl operon is repressed at the level of transcription and is induced by xylose. Gärtner D; Geissendörfer M; Hillen W J Bacteriol; 1988 Jul; 170(7):3102-9. PubMed ID: 2454911 [TBL] [Abstract][Full Text] [Related]
6. Molecular cloning, structure, promoters and regulatory elements for transcription of the Bacillus licheniformis encoded regulon for xylose utilization. Scheler A; Rygus T; Allmansberger R; Hillen W Arch Microbiol; 1991; 155(6):526-34. PubMed ID: 1953294 [TBL] [Abstract][Full Text] [Related]
7. Catabolite repression of the operon for xylose utilization from Bacillus subtilis W23 is mediated at the level of transcription and depends on a cis site in the xylA reading frame. Jacob S; Allmansberger R; Gärtner D; Hillen W Mol Gen Genet; 1991 Oct; 229(2):189-96. PubMed ID: 1921970 [TBL] [Abstract][Full Text] [Related]
8. Molecular cloning, structure, promoters and regulatory elements for transcription of the Bacillus megaterium encoded regulon for xylose utilization. Rygus T; Scheler A; Allmansberger R; Hillen W Arch Microbiol; 1991; 155(6):535-42. PubMed ID: 1719948 [TBL] [Abstract][Full Text] [Related]
9. Development and characterization of a xylose-dependent system for expression of cloned genes in Bacillus subtilis: conditional complementation of a teichoic acid mutant. Bhavsar AP; Zhao X; Brown ED Appl Environ Microbiol; 2001 Jan; 67(1):403-10. PubMed ID: 11133472 [TBL] [Abstract][Full Text] [Related]
10. Regulation of Staphylococcus xylosus xylose utilization genes at the molecular level. Sizemore C; Wieland B; Götz F; Hillen W J Bacteriol; 1992 May; 174(9):3042-8. PubMed ID: 1569030 [TBL] [Abstract][Full Text] [Related]
11. An operator binding-negative mutation of Xyl repressor from Bacillus subtilis is trans dominant in Bacillus megaterium. Kauder C; Allmansberger R; Gärtner D; Schmiedel D; Hillen W FEMS Microbiol Lett; 1993 May; 109(1):81-4. PubMed ID: 8319885 [TBL] [Abstract][Full Text] [Related]
12. Glucose and glucose-6-phosphate interaction with Xyl repressor proteins from Bacillus spp. may contribute to regulation of xylose utilization. Dahl MK; Schmiedel D; Hillen W J Bacteriol; 1995 Oct; 177(19):5467-72. PubMed ID: 7559331 [TBL] [Abstract][Full Text] [Related]
13. Regulation of the central glycolytic genes in Bacillus subtilis: binding of the repressor CggR to its single DNA target sequence is modulated by fructose-1,6-bisphosphate. Doan T; Aymerich S Mol Microbiol; 2003 Mar; 47(6):1709-21. PubMed ID: 12622823 [TBL] [Abstract][Full Text] [Related]
14. Organization and regulation of the D-xylose operons in Escherichia coli K-12: XylR acts as a transcriptional activator. Song S; Park C J Bacteriol; 1997 Nov; 179(22):7025-32. PubMed ID: 9371449 [TBL] [Abstract][Full Text] [Related]
15. Contributions of XylR CcpA and cre to diauxic growth of Bacillus megaterium and to xylose isomerase expression in the presence of glucose and xylose. Schmiedel D; Hillen W Mol Gen Genet; 1996 Feb; 250(3):259-66. PubMed ID: 8602140 [TBL] [Abstract][Full Text] [Related]
16. Catabolite repression of the Bacillus subtilis xyl operon involves a cis element functional in the context of an unrelated sequence, and glucose exerts additional xylR-dependent repression. Kraus A; Hueck C; Gärtner D; Hillen W J Bacteriol; 1994 Mar; 176(6):1738-45. PubMed ID: 8132469 [TBL] [Abstract][Full Text] [Related]
17. Regulation of arginine biosynthesis in the psychropiezophilic bacterium Moritella profunda: in vivo repressibility and in vitro repressor-operator contact probing. Xu Y; Sun Y; Huysveld N; Gigot D; Glansdorff N; Charlier D J Mol Biol; 2003 Feb; 326(2):353-69. PubMed ID: 12559906 [TBL] [Abstract][Full Text] [Related]
18. Organization, promoter analysis and transcriptional regulation of the Staphylococcus xylosus xylose utilization operon. Sizemore C; Buchner E; Rygus T; Witke C; Götz F; Hillen W Mol Gen Genet; 1991 Jul; 227(3):377-84. PubMed ID: 1714034 [TBL] [Abstract][Full Text] [Related]
19. Operator interactions by the Bacillus subtilis arginine repressor/activator, AhrC: novel positioning and DNA-mediated assembly of a transcriptional activator at catabolic sites. Miller CM; Baumberg S; Stockley PG Mol Microbiol; 1997 Oct; 26(1):37-48. PubMed ID: 9383188 [TBL] [Abstract][Full Text] [Related]
20. Identification of an operator sequence for the Bacillus subtilis gnt operon. Fujita Y; Miwa Y J Biol Chem; 1989 Mar; 264(7):4201-6. PubMed ID: 2492998 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]