These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

62 related articles for article (PubMed ID: 15889103)

  • 1. Simplifying the probe set.
    Moore P
    Nature; 2005 May; 435(7039):238. PubMed ID: 15889103
    [No Abstract]   [Full Text] [Related]  

  • 2. Real-time quantitative allele discrimination assay using 3' locked nucleic acid primers for detection of low-percentage mosaic mutations.
    Maertens O; Legius E; Speleman F; Messiaen L; Vandesompele J
    Anal Biochem; 2006 Dec; 359(1):144-6. PubMed ID: 16962063
    [No Abstract]   [Full Text] [Related]  

  • 3. Therapeutic modulation of DMD splicing by blocking exonic splicing enhancer sites with antisense oligonucleotides.
    Aartsma-Rus A; Janson AA; Heemskerk JA; De Winter CL; Van Ommen GJ; Van Deutekom JC
    Ann N Y Acad Sci; 2006 Oct; 1082():74-6. PubMed ID: 17145928
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Locked nucleic acid-based in situ detection of microRNAs in mouse tissue sections.
    Obernosterer G; Martinez J; Alenius M
    Nat Protoc; 2007; 2(6):1508-14. PubMed ID: 17571058
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identifying Suitable Target Regions and Analyzing Off-Target Effects of Therapeutic Oligonucleotides.
    Pedersen L; Hagedorn PH; Koch T
    Methods Mol Biol; 2019; 2036():261-282. PubMed ID: 31410803
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Making antisense of splicing.
    Garcia-Blanco MA
    Curr Opin Mol Ther; 2005 Oct; 7(5):476-82. PubMed ID: 16248283
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Locked nucleic acids for optimizing displacement probes for quantitative real-time PCR.
    Kennedy B; Arar K; Reja V; Henry RJ
    Anal Biochem; 2006 Jan; 348(2):294-9. PubMed ID: 16356464
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Technical improvements in the computational target search for antisense oligonucleotides.
    Far RK; Leppert J; Frank K; Sczakiel G
    Oligonucleotides; 2005; 15(3):223-33. PubMed ID: 16201910
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Splice-switching efficiency and specificity for oligonucleotides with locked nucleic acid monomers.
    Guterstam P; Lindgren M; Johansson H; Tedebark U; Wengel J; El Andaloussi S; Langel U
    Biochem J; 2008 Jun; 412(2):307-13. PubMed ID: 18271753
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of VEGF mRNA antisense oligodeoxynucleotides by RNA structure software and their effects on HL60 and K562 cells.
    Fei J; Zhang Y
    Cell Biol Int; 2005 Sep; 29(9):737-41. PubMed ID: 15985377
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PFRED: A computational platform for siRNA and antisense oligonucleotides design.
    Sciabola S; Xi H; Cruz D; Cao Q; Lawrence C; Zhang T; Rotstein S; Hughes JD; Caffrey DR; Stanton RV
    PLoS One; 2021; 16(1):e0238753. PubMed ID: 33481821
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monitoring HCV RNA viral load by locked nucleic acid molecular beacons real time PCR.
    Morandi L; Ferrari D; Lombardo C; Pession A; Tallini G
    J Virol Methods; 2007 Mar; 140(1-2):148-54. PubMed ID: 17175034
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Concepts to automate the theoretical design of effective antisense oligonucleotides.
    Far RK; Nedbal W; Sczakiel G
    Bioinformatics; 2001 Nov; 17(11):1058-61. PubMed ID: 11724735
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Large-scale characterization of introns in the Pneumocystis carinii genome.
    Slaven BE; Porollo A; Sesterhenn T; Smulian AG; Cushion MT; Meller J
    J Eukaryot Microbiol; 2006; 53 Suppl 1():S151-3. PubMed ID: 17169040
    [No Abstract]   [Full Text] [Related]  

  • 15. Towards high-throughput functional target discovery in angiogenesis research.
    van Beijnum JR; Eijgelaar WJ; Griffioen AW
    Trends Mol Med; 2006 Jan; 12(1):44-52. PubMed ID: 16325471
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantification of low-expressed mRNA using 5' LNA-containing real-time PCR primers.
    Malgoyre A; Banzet S; Mouret C; Bigard AX; Peinnequin A
    Biochem Biophys Res Commun; 2007 Mar; 354(1):246-52. PubMed ID: 17217915
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DMD pseudoexon mutations: splicing efficiency, phenotype, and potential therapy.
    Gurvich OL; Tuohy TM; Howard MT; Finkel RS; Medne L; Anderson CB; Weiss RB; Wilton SD; Flanigan KM
    Ann Neurol; 2008 Jan; 63(1):81-9. PubMed ID: 18059005
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Uncovering information on expression of natural antisense transcripts in Affymetrix MOE430 datasets.
    Oeder S; Mages J; Flicek P; Lang R
    BMC Genomics; 2007 Jun; 8():200. PubMed ID: 17598913
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and properties of double-stranded antisense oligonucleotides connected with a pentaerythritol linker.
    Shibata A; Ueno Y; Matsuda A; Kitade Y
    Nucleic Acids Symp Ser (Oxf); 2006; (50):73-4. PubMed ID: 17150823
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oligonucleotide properties determination and primer designing: a critical examination of predictions.
    Chavali S; Mahajan A; Tabassum R; Maiti S; Bharadwaj D
    Bioinformatics; 2005 Oct; 21(20):3918-25. PubMed ID: 16105896
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.