These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 15889184)

  • 21. Concise syntheses of the cruciferous phytoalexins brassilexin, sinalexin, wasalexins, and analogues: expanding the scope of the vilsmeier formylation.
    Pedras MS; Jha M
    J Org Chem; 2005 Mar; 70(5):1828-34. PubMed ID: 15730307
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Metabolism of crucifer phytoalexins in Sclerotinia sclerotiorum: detoxification of strongly antifungal compounds involves glucosylation.
    Pedras MS; Hossain M
    Org Biomol Chem; 2006 Jul; 4(13):2581-90. PubMed ID: 16791322
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Isosteric probes provide structural requirements essential for detoxification of the phytoalexin brassinin by the fungal pathogen Leptosphaeria maculans.
    Pedras MS; Jha M; Minic Z; Okeola OG
    Bioorg Med Chem; 2007 Sep; 15(18):6054-61. PubMed ID: 17616463
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The cruciferous phytoalexins rapalexin A, brussalexin A and erucalexin: chemistry and metabolism in Leptosphaeria maculans.
    Pedras MS; Sarma-Mamillapalle VK
    Bioorg Med Chem; 2012 Jul; 20(13):3991-6. PubMed ID: 22672981
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Detoxification of cruciferous phytoalexins in Botrytis cinerea: spontaneous dimerization of a camalexin metabolite.
    Pedras MS; Hossain S; Snitynsky RB
    Phytochemistry; 2011 Feb; 72(2-3):199-206. PubMed ID: 21176925
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Use of solid-phase extraction, reverse osmosis and vacuum distillation for recovery of aromatic sulfonic acids from aquatic environment followed by their determination using liquid chromatography-electrospray ionization tandem mass spectrometry.
    Rao RN; Venkateswarlu N; Khalid S; Narsimha R; Sridhar S
    J Chromatogr A; 2006 Apr; 1113(1-2):20-31. PubMed ID: 16483591
    [TBL] [Abstract][Full Text] [Related]  

  • 27. HPLC analyses of cultures of Phoma spp.: differentiation among groups and species through secondary metabolite profiles.
    Pedras MS; Biesenthal CJ
    Can J Microbiol; 2000 Aug; 46(8):685-91. PubMed ID: 10941513
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Isolation, structure determination, and phytotoxicity of unusual dioxopiperazines from the phytopathogenic fungus Phoma lingam.
    Pedras MS; Biesenthal CJ
    Phytochemistry; 2001 Nov; 58(6):905-9. PubMed ID: 11684188
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chemical defenses of crucifers: elicitation and metabolism of phytoalexins and indole-3-acetonitrile in brown mustard and turnip.
    Pedras MS; Nycholat CM; Montaut S; Xu Y; Khan AQ
    Phytochemistry; 2002 Mar; 59(6):611-25. PubMed ID: 11867093
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Inhibitors of the Detoxifying Enzyme of the Phytoalexin Brassinin Based on Quinoline and Isoquinoline Scaffolds.
    Pedras MSC; Abdoli A; Sarma-Mamillapalle VK
    Molecules; 2017 Aug; 22(8):. PubMed ID: 28805743
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The stem canker (blackleg) fungus, Leptosphaeria maculans, enters the genomic era.
    Rouxel T; Balesdent MH
    Mol Plant Pathol; 2005 May; 6(3):225-41. PubMed ID: 20565653
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Salt stress induces production of melanin related metabolites in the phytopathogenic fungus Leptosphaeria maculans.
    Pedras MS; Yu Y
    Nat Prod Commun; 2009 Jan; 4(1):53-8. PubMed ID: 19370875
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Leptosphaeria maculans, the causal agent of blackleg disease of Brassicas.
    Howlett BJ; Idnurm A; Pedras MS
    Fungal Genet Biol; 2001 Jun; 33(1):1-14. PubMed ID: 11407881
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Substrate specificity and inhibition of brassinin hydrolases, detoxifying enzymes from the plant pathogens Leptosphaeria maculans and Alternaria brassicicola.
    Pedras MS; Minic Z; Sarma-Mamillapalle VK
    FEBS J; 2009 Dec; 276(24):7412-28. PubMed ID: 19922473
    [TBL] [Abstract][Full Text] [Related]  

  • 35. ABA is required for Leptosphaeria maculans resistance via ABI1- and ABI4-dependent signaling.
    Kaliff M; Staal J; Myrenås M; Dixelius C
    Mol Plant Microbe Interact; 2007 Apr; 20(4):335-45. PubMed ID: 17427804
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Stress-driven discovery of metabolites from the phytopathogenic fungus Leptosphaeria maculans: structure and activity of leptomaculins A-E.
    Pedras MS; Yu Y
    Bioorg Med Chem; 2008 Sep; 16(17):8063-71. PubMed ID: 18701303
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Abiotic elicitation of indole phytoalexins and resistance to Leptosphaeria maculans within Brassiceae.
    Rouxel T; Kollmann A; Boulidard L; Mithen R
    Planta; 1991 May; 184(2):271-8. PubMed ID: 24194080
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Defense and signalling metabolites of the crucifer Erucastrum canariense: Synchronized abiotic induction of phytoalexins and galacto-oxylipins.
    Pedras MSC; To QH
    Phytochemistry; 2017 Jul; 139():18-24. PubMed ID: 28390240
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Vital staining of plant cell suspension cultures: evaluation of the phytotoxic activity of the phytotoxins phomalide and destruxin B.
    Pedras MSC; Biesenthal CJ
    Plant Cell Rep; 2000 Nov; 19(11):1135-1138. PubMed ID: 30754782
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The phytoalexins from cauliflower, caulilexins A, B and C: isolation, structure determination, syntheses and antifungal activity.
    Pedras MS; Sarwar MG; Suchy M; Adio AM
    Phytochemistry; 2006 Jul; 67(14):1503-9. PubMed ID: 16806330
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.