These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 1588964)

  • 1. SRN1, a yeast gene involved in RNA processing, is identical to HEX2/REG1, a negative regulator in glucose repression.
    Tung KS; Norbeck LL; Nolan SL; Atkinson NS; Hopper AK
    Mol Cell Biol; 1992 Jun; 12(6):2673-80. PubMed ID: 1588964
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The glucose repression and RAS-cAMP signal transduction pathways of Saccharomyces cerevisiae each affect RNA processing and the synthesis of a reporter protein.
    Tung KS; Hopper AK
    Mol Gen Genet; 1995 Apr; 247(1):48-54. PubMed ID: 7715603
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extragenic suppressors of Saccharomyces cerevisiae prp4 mutations identify a negative regulator of PRP genes.
    Maddock JR; Weidenhammer EM; Adams CC; Lunz RL; Woolford JL
    Genetics; 1994 Mar; 136(3):833-47. PubMed ID: 8005438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural and functional analyses of Saccharomyces cerevisiae wild-type and mutant RNA1 genes.
    Traglia HM; Atkinson NS; Hopper AK
    Mol Cell Biol; 1989 Jul; 9(7):2989-99. PubMed ID: 2674676
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The yeast RNA1 gene product necessary for RNA processing is located in the cytosol and apparently excluded from the nucleus.
    Hopper AK; Traglia HM; Dunst RW
    J Cell Biol; 1990 Aug; 111(2):309-21. PubMed ID: 2116418
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of Hex2 protein, a negative regulatory element necessary for glucose repression in yeast.
    Niederacher D; Entian KD
    Eur J Biochem; 1991 Sep; 200(2):311-9. PubMed ID: 1889400
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation and characterization of RAT1: an essential gene of Saccharomyces cerevisiae required for the efficient nucleocytoplasmic trafficking of mRNA.
    Amberg DC; Goldstein AL; Cole CN
    Genes Dev; 1992 Jul; 6(7):1173-89. PubMed ID: 1628825
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ADH2 expression is repressed by REG1 independently of mutations that alter the phosphorylation of the yeast transcription factor ADR1.
    Dombek KM; Camier S; Young ET
    Mol Cell Biol; 1993 Jul; 13(7):4391-9. PubMed ID: 8321238
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A suppressor of temperature-sensitive rna mutations that affect mRNA metabolism in Saccharomyces cerevisiae.
    Pearson NJ; Thorburn PC; Haber JE
    Mol Cell Biol; 1982 May; 2(5):571-77. PubMed ID: 7050675
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic and molecular characterization of GAL83: its interaction and similarities with other genes involved in glucose repression in Saccharomyces cerevisiae.
    Erickson JR; Johnston M
    Genetics; 1993 Nov; 135(3):655-64. PubMed ID: 8293971
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glucose repression on RIM1, a gene encoding a mitochondrial single-stranded DNA-binding protein, in Saccharomyces cerevisiae: a possible regulation at pre-mRNA splicing.
    Li Z; Ling F; Shibata T
    Curr Genet; 1998 Dec; 34(5):351-9. PubMed ID: 9871116
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of TUP1, a mediator of glucose repression in Saccharomyces cerevisiae.
    Williams FE; Trumbly RJ
    Mol Cell Biol; 1990 Dec; 10(12):6500-11. PubMed ID: 2247069
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two adjacent nuclear genes, ISF1 and NAM7/UPF1, cooperatively participate in mitochondrial functions in Saccharomyces cerevisiae.
    Altamura N; Dujardin G; Groudinsky O; Slonimski PP
    Mol Gen Genet; 1994 Jan; 242(1):49-56. PubMed ID: 7506349
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A yeast protein with homology to the beta-subunit of G proteins is involved in control of heme-regulated and catabolite-repressed genes.
    Zhang M; Rosenblum-Vos LS; Lowry CV; Boakye KA; Zitomer RS
    Gene; 1991 Jan; 97(2):153-61. PubMed ID: 1900249
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential post-transcriptional regulation of yeast mRNAs in response to high and low glucose concentrations.
    Yin Z; Hatton L; Brown AJ
    Mol Microbiol; 2000 Feb; 35(3):553-65. PubMed ID: 10672178
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of HIR1 and HIR2, two genes required for regulation of histone gene transcription in Saccharomyces cerevisiae.
    Sherwood PW; Tsang SV; Osley MA
    Mol Cell Biol; 1993 Jan; 13(1):28-38. PubMed ID: 8417331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PTA1, an essential gene of Saccharomyces cerevisiae affecting pre-tRNA processing.
    O'Connor JP; Peebles CL
    Mol Cell Biol; 1992 Sep; 12(9):3843-56. PubMed ID: 1508188
    [TBL] [Abstract][Full Text] [Related]  

  • 18. STP1, a gene involved in pre-tRNA processing, encodes a nuclear protein containing zinc finger motifs.
    Wang SS; Stanford DR; Silvers CD; Hopper AK
    Mol Cell Biol; 1992 Jun; 12(6):2633-43. PubMed ID: 1588961
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regions in the promoter of the yeast FBP1 gene implicated in catabolite repression may bind the product of the regulatory gene MIG1.
    Mercado JJ; Vincent O; Gancedo JM
    FEBS Lett; 1991 Oct; 291(1):97-100. PubMed ID: 1657641
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of an essential Saccharomyces cerevisiae gene related to RNA processing: cloning of RNA1 and generation of a new allele with a novel phenotype.
    Atkinson NS; Dunst RW; Hopper AK
    Mol Cell Biol; 1985 May; 5(5):907-15. PubMed ID: 3889591
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.