BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 1588966)

  • 1. Instability of simple sequence DNA in Saccharomyces cerevisiae.
    Henderson ST; Petes TD
    Mol Cell Biol; 1992 Jun; 12(6):2749-57. PubMed ID: 1588966
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Instability of a plasmid-borne inverted repeat in Saccharomyces cerevisiae.
    Henderson ST; Petes TD
    Genetics; 1993 May; 134(1):57-62. PubMed ID: 8514149
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of microsatellite mutations in the mitochondrial DNA of Saccharomyces cerevisiae.
    Sia EA; Butler CA; Dominska M; Greenwell P; Fox TD; Petes TD
    Proc Natl Acad Sci U S A; 2000 Jan; 97(1):250-5. PubMed ID: 10618404
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microsatellite instability in yeast: dependence on the length of the microsatellite.
    Wierdl M; Dominska M; Petes TD
    Genetics; 1997 Jul; 146(3):769-79. PubMed ID: 9215886
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutations in POL1 increase the mitotic instability of tandem inverted repeats in Saccharomyces cerevisiae.
    Ruskin B; Fink GR
    Genetics; 1993 May; 134(1):43-56. PubMed ID: 8514147
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inverted DNA repeats: a source of eukaryotic genomic instability.
    Gordenin DA; Lobachev KS; Degtyareva NP; Malkova AL; Perkins E; Resnick MA
    Mol Cell Biol; 1993 Sep; 13(9):5315-22. PubMed ID: 8395002
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Replication slippage between distant short repeats in Saccharomyces cerevisiae depends on the direction of replication and the RAD50 and RAD52 genes.
    Tran HT; Degtyareva NP; Koloteva NN; Sugino A; Masumoto H; Gordenin DA; Resnick MA
    Mol Cell Biol; 1995 Oct; 15(10):5607-17. PubMed ID: 7565712
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increase in incidence of chromosome instability and non-conservative recombination between repeats in Saccharomyces cerevisiae hpr1 delta strains.
    Santos-Rosa H; Aguilera A
    Mol Gen Genet; 1994 Oct; 245(2):224-36. PubMed ID: 7816031
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Destabilization of simple repetitive DNA sequences by transcription in yeast.
    Wierdl M; Greene CN; Datta A; Jinks-Robertson S; Petes TD
    Genetics; 1996 Jun; 143(2):713-21. PubMed ID: 8725221
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A DNA sequence conferring high postmeiotic segregation frequency to heterozygous deletions in Saccharomyces cerevisiae is related to sequences associated with eucaryotic recombination hotspots.
    White JH; DiMartino JF; Anderson RW; Lusnak K; Hilbert D; Fogel S
    Mol Cell Biol; 1988 Mar; 8(3):1253-8. PubMed ID: 3285179
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of two telomeric DNA processing reactions in Saccharomyces cerevisiae.
    Murray AW; Claus TE; Szostak JW
    Mol Cell Biol; 1988 Nov; 8(11):4642-50. PubMed ID: 3062364
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An alternative pathway for yeast telomere maintenance rescues est1- senescence.
    Lundblad V; Blackburn EH
    Cell; 1993 Apr; 73(2):347-60. PubMed ID: 8477448
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation and characterization of two Saccharomyces cerevisiae genes that encode proteins that bind to (TG1-3)n single strand telomeric DNA in vitro.
    Lin JJ; Zakian VA
    Nucleic Acids Res; 1994 Nov; 22(23):4906-13. PubMed ID: 7800479
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Factors affecting inverted repeat stimulation of recombination and deletion in Saccharomyces cerevisiae.
    Lobachev KS; Shor BM; Tran HT; Taylor W; Keen JD; Resnick MA; Gordenin DA
    Genetics; 1998 Apr; 148(4):1507-24. PubMed ID: 9560370
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Saccharomyces cerevisiae RAD5-encoded DNA repair protein contains DNA helicase and zinc-binding sequence motifs and affects the stability of simple repetitive sequences in the genome.
    Johnson RE; Henderson ST; Petes TD; Prakash S; Bankmann M; Prakash L
    Mol Cell Biol; 1992 Sep; 12(9):3807-18. PubMed ID: 1324406
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Homologous, homeologous, and illegitimate repair of double-strand breaks during transformation of a wild-type strain and a rad52 mutant strain of Saccharomyces cerevisiae.
    Mezard C; Nicolas A
    Mol Cell Biol; 1994 Feb; 14(2):1278-92. PubMed ID: 8289807
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Instability of CAG and CTG trinucleotide repeats in Saccharomyces cerevisiae.
    Miret JJ; Pessoa-Brandão L; Lahue RS
    Mol Cell Biol; 1997 Jun; 17(6):3382-7. PubMed ID: 9154837
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hdf1, a yeast Ku-protein homologue, is involved in illegitimate recombination, but not in homologous recombination.
    Tsukamoto Y; Kato J; Ikeda H
    Nucleic Acids Res; 1996 Jun; 24(11):2067-72. PubMed ID: 8668537
    [TBL] [Abstract][Full Text] [Related]  

  • 19. (CA/GT)(n) microsatellites affect homologous recombination during yeast meiosis.
    Gendrel CG; Boulet A; Dutreix M
    Genes Dev; 2000 May; 14(10):1261-8. PubMed ID: 10817760
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unusual DNA sequences associated with the ends of yeast chromosomes.
    Walmsley RW; Chan CS; Tye BK; Petes TD
    Nature; 1984 Jul 12-18; 310(5973):157-60. PubMed ID: 6377091
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.