BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 15889923)

  • 1. Microbioassay system for antiallergic drug screening using suspension cells retaining in a poly(dimethylsiloxane) microfluidic device.
    Tokuyama T; Fujii S; Sato K; Abo M; Okubo A
    Anal Chem; 2005 May; 77(10):3309-14. PubMed ID: 15889923
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A microfluidic device for depositing and addressing two cell populations with intercellular population communication capability.
    Lovchik RD; Tonna N; Bianco F; Matteoli M; Delamarche E
    Biomed Microdevices; 2010 Apr; 12(2):275-82. PubMed ID: 20013313
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Drug permeability assay using microhole-trapped cells in a microfluidic device.
    Yeon JH; Park JK
    Anal Chem; 2009 Mar; 81(5):1944-51. PubMed ID: 19203200
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microbioassay system for an anti-cancer agent test using animal cells on a microfluidic gradient mixer.
    Fujii S; Uematsu M; Yabuki S; Abo M; Yoshimura E; Sato K
    Anal Sci; 2006 Jan; 22(1):87-90. PubMed ID: 16429779
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On-chip amperometric measurement of quantal catecholamine release using transparent indium tin oxide electrodes.
    Sun X; Gillis KD
    Anal Chem; 2006 Apr; 78(8):2521-5. PubMed ID: 16615759
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antiallergic activity of a disaccharide isolated from Sanguisorba officinalis.
    Park KH; Koh D; Kim K; Park J; Lim Y
    Phytother Res; 2004 Aug; 18(8):658-62. PubMed ID: 15472918
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a microchip-based bioassay system using cultured cells.
    Goto M; Sato K; Murakami A; Tokeshi M; Kitamori T
    Anal Chem; 2005 Apr; 77(7):2125-31. PubMed ID: 15801746
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative measurement and control of oxygen levels in microfluidic poly(dimethylsiloxane) bioreactors during cell culture.
    Mehta G; Mehta K; Sud D; Song JW; Bersano-Begey T; Futai N; Heo YS; Mycek MA; Linderman JJ; Takayama S
    Biomed Microdevices; 2007 Apr; 9(2):123-34. PubMed ID: 17160707
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Algal fluorescence sensor integrated into a microfluidic chip for water pollutant detection.
    Lefèvre F; Chalifour A; Yu L; Chodavarapu V; Juneau P; Izquierdo R
    Lab Chip; 2012 Feb; 12(4):787-93. PubMed ID: 22193420
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct plate-reader measurement of nitric oxide released from hypoxic erythrocytes flowing through a microfluidic device.
    Halpin ST; Spence DM
    Anal Chem; 2010 Sep; 82(17):7492-7. PubMed ID: 20681630
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A microfluidic platform for 3-dimensional cell culture and cell-based assays.
    Kim MS; Yeon JH; Park JK
    Biomed Microdevices; 2007 Feb; 9(1):25-34. PubMed ID: 17103048
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Perfusion in microfluidic cross-flow: separation of white blood cells from whole blood and exchange of medium in a continuous flow.
    VanDelinder V; Groisman A
    Anal Chem; 2007 Mar; 79(5):2023-30. PubMed ID: 17249639
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlled deposition of cells in sealed microfluidics using flow velocity boundaries.
    Lovchik RD; Bianco F; Matteoli M; Delamarche E
    Lab Chip; 2009 May; 9(10):1395-402. PubMed ID: 19417906
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The anti-anaphylactic effect of the gall of Rhus javanica is mediated through inhibition of histamine release and inflammatory cytokine secretion.
    Kim SH; Park HH; Lee S; Jun CD; Choi BJ; Kim SY; Kim SH; Kim DK; Park JS; Chae BS; Shin TY
    Int Immunopharmacol; 2005 Dec; 5(13-14):1820-9. PubMed ID: 16275618
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Disposable polydimethylsiloxane/silicon hybrid chips for protein detection.
    Li S; Floriano PN; Christodoulides N; Fozdar DY; Shao D; Ali MF; Dharshan P; Mohanty S; Neikirk D; McDevitt JT; Chen S
    Biosens Bioelectron; 2005 Oct; 21(4):574-80. PubMed ID: 16202870
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of drug metabolites and cytotoxicity assay simultaneously using an integrated microfluidic device.
    Ma B; Zhang G; Qin J; Lin B
    Lab Chip; 2009 Jan; 9(2):232-8. PubMed ID: 19107278
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemical microfluidic biosensor for the detection of nucleic acid sequences.
    Goral VN; Zaytseva NV; Baeumner AJ
    Lab Chip; 2006 Mar; 6(3):414-21. PubMed ID: 16511625
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-loading and cell culture in one layer microfluidic devices.
    Wang L; Ni XF; Luo CX; Zhang ZL; Pang DW; Chen Y
    Biomed Microdevices; 2009 Jun; 11(3):679-84. PubMed ID: 19130238
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reproducibility and robustness of a real-time microfluidic cell toxicity assay.
    Cooksey GA; Elliott JT; Plant AL
    Anal Chem; 2011 May; 83(10):3890-6. PubMed ID: 21506521
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Parallel microfluidic networks for studying cellular response to chemical modulation.
    Liu D; Wang L; Zhong R; Li B; Ye N; Liu X; Lin B
    J Biotechnol; 2007 Sep; 131(3):286-92. PubMed ID: 17706314
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.