These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 15890401)

  • 41. In-situ preparation of poly(propylene fumarate)--hydroxyapatite composite.
    Hakimimehr D; Liu DM; Troczynski T
    Biomaterials; 2005 Dec; 26(35):7297-303. PubMed ID: 16026822
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Ultrastructural observation of single-crystal apatite fibres.
    Aizawa M; Porter AE; Best SM; Bonfield W
    Biomaterials; 2005 Jun; 26(17):3427-33. PubMed ID: 15621231
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The crystallization of Hydroxyapatite in the presence of sodium alginate.
    Malkaj P; Pierri E; Dalas E
    J Mater Sci Mater Med; 2005 Aug; 16(8):733-7. PubMed ID: 15965743
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effect of electrical polarization of hydroxyapatite ceramics on new bone formation.
    Itoh S; Nakamura S; Kobayashi T; Shinomiya K; Yamashita K; Itoh S
    Calcif Tissue Int; 2006 Mar; 78(3):133-42. PubMed ID: 16525747
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The influence of crystallised Fe3O4 on the magnetic properties of coprecipitation-derived ferrimagnetic glass-ceramics.
    Bretcanu O; Spriano S; Verné E; Cöisson M; Tiberto P; Allia P
    Acta Biomater; 2005 Jul; 1(4):421-9. PubMed ID: 16701823
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Physico-chemical characteristics and protein adsorption potential of hydroxyapatite particles: influence on in vitro biocompatibility of ceramics after sintering.
    Rouahi M; Champion E; Gallet O; Jada A; Anselme K
    Colloids Surf B Biointerfaces; 2006 Jan; 47(1):10-9. PubMed ID: 16387480
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Mechanical properties of hydroxyapatite and OH-carbonated hydroxyapatite single crystals.
    Teraoka K; Ito A; Maekawa K; Onuma K; Tateishi T; Tsutsumi S
    J Dent Res; 1998 Jul; 77(7):1560-8. PubMed ID: 9663442
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Fracture mechanics of hydroxyapatite single crystals under geometric confinement.
    Libonati F; Nair AK; Vergani L; Buehler MJ
    J Mech Behav Biomed Mater; 2013 Apr; 20():184-91. PubMed ID: 23500480
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Suitability evaluation of sol-gel derived Si-substituted hydroxyapatite for dental and maxillofacial applications through in vitro osteoblasts response.
    Balamurugan A; Rebelo AH; Lemos AF; Rocha JH; Ventura JM; Ferreira JM
    Dent Mater; 2008 Oct; 24(10):1374-80. PubMed ID: 18417203
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The effect of grain size on the biocompatibility, cell-materials interface, and mechanical properties of microwave-sintered bioceramics.
    Veljović D; Colić M; Kojić V; Bogdanović G; Kojić Z; Banjac A; Palcevskis E; Petrović R; Janaćković D
    J Biomed Mater Res A; 2012 Nov; 100(11):3059-70. PubMed ID: 22733649
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effects of MgO-CaO-P2O5-Na2O-based additives on mechanical and biological properties of hydroxyapatite.
    Kalita SJ; Rokusek D; Bose S; Hosick HL; Bandyopadhyay A
    J Biomed Mater Res A; 2004 Oct; 71(1):35-44. PubMed ID: 15368252
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Domain switching in polycrystalline ferroelectric ceramics.
    Li JY; Rogan RC; Ustündag E; Bhattacharya K
    Nat Mater; 2005 Oct; 4(10):776-81. PubMed ID: 16170320
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Bioactivation of inert alumina ceramics by hydroxylation.
    Fischer H; Niedhart C; Kaltenborn N; Prange A; Marx R; Niethard FU; Telle R
    Biomaterials; 2005 Nov; 26(31):6151-7. PubMed ID: 15927249
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Ab initio elastic properties and tensile strength of crystalline hydroxyapatite.
    Ching WY; Rulis P; Misra A
    Acta Biomater; 2009 Oct; 5(8):3067-75. PubMed ID: 19442769
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mechanical characterization of ultra-high molecular weight polyethylene-hydroxyapatite nanocomposites.
    Crowley J; Chalivendra VB
    Biomed Mater Eng; 2008; 18(3):149-60. PubMed ID: 18725695
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Influence of cosolvents and in situ forming hydroxyapatite on the mechanical characteristics of collagen films.
    Ho HO; Tsai T; Liu CM; Sheu MT
    J Biomed Mater Res; 2002 Oct; 62(1):22-9. PubMed ID: 12124783
    [TBL] [Abstract][Full Text] [Related]  

  • 57. From brittle to ductile fracture of bone.
    Peterlik H; Roschger P; Klaushofer K; Fratzl P
    Nat Mater; 2006 Jan; 5(1):52-5. PubMed ID: 16341218
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Evaluation of test protocol variables for dental implant fatigue research.
    Lee CK; Karl M; Kelly JR
    Dent Mater; 2009 Nov; 25(11):1419-25. PubMed ID: 19646746
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Preparation of nanometer-scale rod array of hydroxyapatite crystal.
    Hayakawa S; Li Y; Tsuru K; Osaka A; Fujii E; Kawabata K
    Acta Biomater; 2009 Jul; 5(6):2152-60. PubMed ID: 19286435
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Processing and mechanical properties of HA/UHMWPE nanocomposites.
    Fang L; Leng Y; Gao P
    Biomaterials; 2006 Jul; 27(20):3701-7. PubMed ID: 16564570
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.