These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

302 related articles for article (PubMed ID: 15890403)

  • 1. Recent advances in animal models of chronic antidepressant effects: the novelty-induced hypophagia test.
    Dulawa SC; Hen R
    Neurosci Biobehav Rev; 2005; 29(4-5):771-83. PubMed ID: 15890403
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Drug-dependent requirement of hippocampal neurogenesis in a model of depression and of antidepressant reversal.
    Surget A; Saxe M; Leman S; Ibarguen-Vargas Y; Chalon S; Griebel G; Hen R; Belzung C
    Biol Psychiatry; 2008 Aug; 64(4):293-301. PubMed ID: 18406399
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Behavioral effects of the beta3 adrenoceptor agonist SR58611A: is it the putative prototype of a new class of antidepressant/anxiolytic drugs?
    Consoli D; Leggio GM; Mazzola C; Micale V; Drago F
    Eur J Pharmacol; 2007 Nov; 573(1-3):139-47. PubMed ID: 17669397
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antidepressant-like effects of serotonin type-3 antagonist, ondansetron: an investigation in behaviour-based rodent models.
    Ramamoorthy R; Radhakrishnan M; Borah M
    Behav Pharmacol; 2008 Feb; 19(1):29-40. PubMed ID: 18195592
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Models of anxiety: responses of mice to novelty and open spaces in a 3D maze.
    Ennaceur A; Michalikova S; van Rensburg R; Chazot PL
    Behav Brain Res; 2006 Nov; 174(1):9-38. PubMed ID: 16919819
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The tail suspension test as a model for assessing antidepressant activity: review of pharmacological and genetic studies in mice.
    Cryan JF; Mombereau C; Vassout A
    Neurosci Biobehav Rev; 2005; 29(4-5):571-625. PubMed ID: 15890404
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Long-term behavioral changes after cessation of chronic antidepressant treatment in olfactory bulbectomized rats.
    Breuer ME; Groenink L; Oosting RS; Westenberg HG; Olivier B
    Biol Psychiatry; 2007 Apr; 61(8):990-5. PubMed ID: 17141743
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of chronic fluoxetine in animal models of anxiety and depression.
    Dulawa SC; Holick KA; Gundersen B; Hen R
    Neuropsychopharmacology; 2004 Jul; 29(7):1321-30. PubMed ID: 15085085
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A role for MAP kinase signaling in behavioral models of depression and antidepressant treatment.
    Duman CH; Schlesinger L; Kodama M; Russell DS; Duman RS
    Biol Psychiatry; 2007 Mar; 61(5):661-70. PubMed ID: 16945347
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antidepressant-like effects of the glucocorticoid receptor antagonist RU-43044 are associated with changes in prefrontal dopamine in mouse models of depression.
    Ago Y; Arikawa S; Yata M; Yano K; Abe M; Takuma K; Matsuda T
    Neuropharmacology; 2008 Dec; 55(8):1355-63. PubMed ID: 18796307
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Behavioral profile of P2X7 receptor knockout mice in animal models of depression and anxiety: relevance for neuropsychiatric disorders.
    Basso AM; Bratcher NA; Harris RR; Jarvis MF; Decker MW; Rueter LE
    Behav Brain Res; 2009 Mar; 198(1):83-90. PubMed ID: 18996151
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Omega-3 fatty acids have antidepressant activity in forced swimming test in Wistar rats.
    Lakhwani L; Tongia SK; Pal VS; Agrawal RP; Nyati P; Phadnis P
    Acta Pol Pharm; 2007; 64(3):271-6. PubMed ID: 17695151
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of unpredictable chronic mild stress on anxiety and depression-like behavior in mice.
    Mineur YS; Belzung C; Crusio WE
    Behav Brain Res; 2006 Nov; 175(1):43-50. PubMed ID: 17023061
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Infusion of neuropeptide Y into CA3 region of hippocampus produces antidepressant-like effect via Y1 receptor.
    Ishida H; Shirayama Y; Iwata M; Katayama S; Yamamoto A; Kawahara R; Nakagome K
    Hippocampus; 2007; 17(4):271-80. PubMed ID: 17265460
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antidepressant-like effect of liquiritin from Glycyrrhiza uralensis in chronic variable stress induced depression model rats.
    Zhao Z; Wang W; Guo H; Zhou D
    Behav Brain Res; 2008 Dec; 194(1):108-13. PubMed ID: 18655806
    [TBL] [Abstract][Full Text] [Related]  

  • 16. WAY-200070, a selective agonist of estrogen receptor beta as a potential novel anxiolytic/antidepressant agent.
    Hughes ZA; Liu F; Platt BJ; Dwyer JM; Pulicicchio CM; Zhang G; Schechter LE; Rosenzweig-Lipson S; Day M
    Neuropharmacology; 2008 Jun; 54(7):1136-42. PubMed ID: 18423777
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anxiolytic- and antidepressant-like properties of ketamine in behavioral and neurophysiological animal models.
    Engin E; Treit D; Dickson CT
    Neuroscience; 2009 Jun; 161(2):359-69. PubMed ID: 19321151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antidepressant-like effect of the extract of Rosmarinus officinalis in mice: involvement of the monoaminergic system.
    Machado DG; Bettio LE; Cunha MP; Capra JC; Dalmarco JB; Pizzolatti MG; Rodrigues AL
    Prog Neuropsychopharmacol Biol Psychiatry; 2009 Jun; 33(4):642-50. PubMed ID: 19286446
    [TBL] [Abstract][Full Text] [Related]  

  • 19. What should animal models of depression model?
    Frazer A; Morilak DA
    Neurosci Biobehav Rev; 2005; 29(4-5):515-23. PubMed ID: 15893377
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the mechanism of antidepressant-like action of berberine chloride.
    Kulkarni SK; Dhir A
    Eur J Pharmacol; 2008 Jul; 589(1-3):163-72. PubMed ID: 18585703
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.