These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 15891016)

  • 1. Signal transduction in Rana melanotrope cells: mechanism of action of neurotensin on secretory and electrical activities.
    Louiset E; Belmeguenai A; Desrues L; Leprince J; Tonon MC; Vaudry H
    Ann N Y Acad Sci; 2005 Apr; 1040():131-6. PubMed ID: 15891016
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neurotensin stimulates both calcium mobilization from inositol trisphosphate-sensitive intracellular stores and calcium influx through membrane channels in frog pituitary melanotrophs.
    Belmeguenai A; Desrues L; Leprince J; Vaudry H; Tonon MC; Louiset E
    Endocrinology; 2003 Dec; 144(12):5556-67. PubMed ID: 14500581
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neurotensin modulates the amplitude and frequency of voltage-activated Ca2+ currents in frog pituitary melanotrophs: implication of the inositol triphosphate/protein kinase C pathway.
    Belmeguenai A; Leprince J; Tonon MC; Vaudry H; Louiset E
    Eur J Neurosci; 2002 Nov; 16(10):1907-16. PubMed ID: 12453054
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neurotensin modulates the electrical activity of frog pituitary melanotropes via activation of a G-protein-coupled receptor pharmacologically related to both the NTS1 and nts2 receptors of mammals.
    Belmeguenai A; Vaudry H; Leprince J; Vivet B; Cavelier F; Martinez J; Louiset E
    Neuroendocrinology; 2000 Dec; 72(6):379-91. PubMed ID: 11146421
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neuroendocrine regulation of frog adrenocortical cells by neurotensin.
    Sicard F; De Groot D; Gras M; Leprince J; Conlon JM; Roubos EW; Vaudry H; Delarue C
    Ann N Y Acad Sci; 2005 Apr; 1040():200-5. PubMed ID: 15891025
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Serotonin interferes with Ca2+ and PKC signaling to reduce gonadotropin-releasing hormone-stimulated GH secretion in goldfish pituitary cells.
    Yu Y; Wong AO; Chang JP
    Gen Comp Endocrinol; 2008 Oct; 159(1):58-66. PubMed ID: 18723020
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [The role of protein kinase C-mediated phosphorylation of type III inositol 1, 4, 5-triphosphate receptor in cholecystokinin octapeptide induced calcium mobilization in gastric antral smooth muscle cells].
    Si XM; Huang L; Luo HS; Paul SC; Lü P
    Zhonghua Yi Xue Za Zhi; 2007 Mar; 87(10):664-9. PubMed ID: 17553302
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two frog melanotrope cell subpopulations exhibiting distinct biochemical and physiological patterns in basal conditions and under thyrotropin-releasing hormone stimulation.
    Gonzalez de Aguilar JL; Malagon MM; Vazquez-Martinez RM; Lihrmann I; Tonon MC; Vaudry H; Gracia-Navarro F
    Endocrinology; 1997 Mar; 138(3):970-7. PubMed ID: 9048597
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The regulation of alpha-MSH release by GABA is mediated by a chloride-dependent [Ca2+]c increase in frog melanotrope cells.
    Desrues L; Castel H; Malagon MM; Vaudry H; Tonon MC
    Peptides; 2005 Oct; 26(10):1936-43. PubMed ID: 15990198
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemokine stromal cell-derived factor 1alpha induces proliferation and growth hormone release in GH4C1 rat pituitary adenoma cell line through multiple intracellular signals.
    Florio T; Casagrande S; Diana F; Bajetto A; Porcile C; Zona G; Thellung S; Arena S; Pattarozzi A; Corsaro A; Spaziante R; Robello M; Schettini G
    Mol Pharmacol; 2006 Feb; 69(2):539-46. PubMed ID: 16258074
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Grass carp somatolactin: II. Pharmacological study on postreceptor signaling mechanisms for PACAP-induced somatolactin-alpha and -beta gene expression.
    Jiang Q; He M; Wang X; Wong AO
    Am J Physiol Endocrinol Metab; 2008 Aug; 295(2):E477-90. PubMed ID: 18523121
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The extracellular calcium-sensing receptor increases the number of calcium steps and action currents in pituitary melanotrope cells.
    van den Hurk MJ; Jenks BG; Roubos EW; Scheenen WJ
    Neurosci Lett; 2005 Mar; 377(2):125-9. PubMed ID: 15740850
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasticity of melanotrope cell regulations in Xenopus laevis.
    Roubos EW; Van Wijk DC; Kozicz T; Scheenen WJ; Jenks BG
    Eur J Neurosci; 2010 Dec; 32(12):2082-6. PubMed ID: 21143662
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation, primary structure, and effects on alpha-melanocyte-stimulating hormone release of frog neurotensin.
    Desrues L; Tonon MC; Leprince J; Vaudry H; Conlon JM
    Endocrinology; 1998 Oct; 139(10):4140-6. PubMed ID: 9751493
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of acetylcholine on the electrical and secretory activities of frog pituitary melanotrophs.
    Louiset E; Cazin L; Duval O; Lamacz M; Tonon MC; Vaudry H
    Brain Res; 1990 Nov; 533(2):300-8. PubMed ID: 1963111
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrical activity in adenohypophyseal cells and effects of hypophyseotropic substances.
    Taraskevich PS; Douglas WW
    Fed Proc; 1984 Jun; 43(9):2373-8. PubMed ID: 6427013
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A selective small molecule glucagon-like peptide-1 secretagogue acting via depolarization-coupled Ca(2+) influx.
    Eiki J; Saeki K; Nagano N; Iino T; Yonemoto M; Takayenoki-Iino Y; Ito S; Nishimura T; Sato Y; Bamba M; Watanabe H; Sasaki K; Ohyama S; Kanatani A; Nagase T; Yada T
    J Endocrinol; 2009 Jun; 201(3):361-7. PubMed ID: 19332449
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glutamate stimulation increases hormone release in rat melanotrophs.
    Kreft M; Blaganje M; Grilc S; Rupnik M; Zorec R
    Neurosci Lett; 2006 Sep; 404(3):299-302. PubMed ID: 16814468
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cyanocobalamin, vitamin B12, depresses glutamate release through inhibition of voltage-dependent Ca2+ influx in rat cerebrocortical nerve terminals (synaptosomes).
    Hung KL; Wang CC; Huang CY; Wang SJ
    Eur J Pharmacol; 2009 Jan; 602(2-3):230-7. PubMed ID: 19073169
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Signaling by G-protein-coupled receptor (GPCR): studies on the GnRH receptor.
    Naor Z
    Front Neuroendocrinol; 2009 Jan; 30(1):10-29. PubMed ID: 18708085
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.