These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 15891099)
1. Calcium influx through voltage-operated calcium channels is required for proopiomelanocortin protein expression in Xenopus melanotropes. van den Hurk MJ; Scheenen WJ; Roubos EW; Jenks BG Ann N Y Acad Sci; 2005 Apr; 1040():494-7. PubMed ID: 15891099 [TBL] [Abstract][Full Text] [Related]
2. BDNF stimulates Ca2+ oscillation frequency in melanotrope cells of Xenopus laevis: contribution of IP3-receptor-mediated release of intracellular Ca2+ to gene expression. Kuribara M; Eijsink VD; Roubos EW; Jenks BG; Scheenen WJ Gen Comp Endocrinol; 2010 Nov; 169(2):123-9. PubMed ID: 20736010 [TBL] [Abstract][Full Text] [Related]
3. Ca2+ oscillations in melanotropes of Xenopus laevis: their generation, propagation, and function. Jenks BG; Roubos EW; Scheenen WJ Gen Comp Endocrinol; 2003 May; 131(3):209-19. PubMed ID: 12714002 [TBL] [Abstract][Full Text] [Related]
4. Analysis of Xenopus melanotrope cell size and POMC-gene expression. Corstens GJ; Roubos EW; Jenks BG; Van Erp PE Ann N Y Acad Sci; 2005 Apr; 1040():269-72. PubMed ID: 15891040 [TBL] [Abstract][Full Text] [Related]
5. Expression and characterization of the extracellular Ca(2+)-sensing receptor in melanotrope cells of Xenopus laevis. van den Hurk MJ; Ouwens DT; Scheenen WJ; Limburg V; Gellekink H; Bai M; Roubos EW; Jenks BG Endocrinology; 2003 Jun; 144(6):2524-33. PubMed ID: 12746315 [TBL] [Abstract][Full Text] [Related]
6. Acetylcholine autoexcites the release of proopiomelanocortin-derived peptides from melanotrope cells of Xenopus laevis via an M1 muscarinic receptor. Van Strien FJ; Roubos EW; Vaudry H; Jenks BG Endocrinology; 1996 Oct; 137(10):4298-307. PubMed ID: 8828489 [TBL] [Abstract][Full Text] [Related]
7. Receptors for neuropeptide Y, gamma-aminobutyric acid and dopamine differentially regulate Ca2+ currents in Xenopus melanotrope cells via the G(i) protein beta/gamma-subunit. Zhang H; Roubos EW; Jenks BG; Scheenen WJ Gen Comp Endocrinol; 2006 Jan; 145(2):140-7. PubMed ID: 16214143 [TBL] [Abstract][Full Text] [Related]
9. Cell type-specific transgene expression of the prion protein in Xenopus intermediate pituitary cells. van Rosmalen JW; Martens GJ FEBS J; 2006 Feb; 273(4):847-62. PubMed ID: 16441670 [TBL] [Abstract][Full Text] [Related]
10. Actions of PACAP and VIP on melanotrope cells of Xenopus laevis. Kidane AH; Cruijsen PM; Ortiz-Bazan MA; Vaudry H; Leprince J; Kuijpers-Kwant FJ; Roubos EW; Jenks BG Peptides; 2007 Sep; 28(9):1790-6. PubMed ID: 17482316 [TBL] [Abstract][Full Text] [Related]
11. Plasticity in the melanotrope neuroendocrine interface of Xenopus laevis. Jenks BG; Kidane AH; Scheenen WJ; Roubos EW Neuroendocrinology; 2007; 85(3):177-85. PubMed ID: 17389778 [TBL] [Abstract][Full Text] [Related]
12. Expression of proopiomelanocortin and its cleavage enzyme genes in Rana esculenta and Xenopus laevis gonads. Carotti M; Nabissi M; Mosconi G; Gangnon F; Lihrmann I; Vaudry H; Polzonetti-Magni AM Ann N Y Acad Sci; 2005 Apr; 1040():261-3. PubMed ID: 15891038 [TBL] [Abstract][Full Text] [Related]
13. Neuronal, neurohormonal, and autocrine control of Xenopus melanotrope cell activity. Roubos EW; Scheenen WJ; Jenks BG Ann N Y Acad Sci; 2005 Apr; 1040():172-83. PubMed ID: 15891022 [TBL] [Abstract][Full Text] [Related]
14. Analysis of autofeedback mechanisms in the secretion of pro-opiomelanocortin-derived peptides by melanotrope cells of Xenopus laevis. de Koning HP; Jenks BG; Scheenen WJ; Balm PH; Roubos EW Gen Comp Endocrinol; 1992 Sep; 87(3):394-401. PubMed ID: 1330808 [TBL] [Abstract][Full Text] [Related]
15. Calcium channel kinetics of melanotrope cells in Xenopus laevis depend on environmental stimulation. Zhang H; Langeslag M; Breukels V; Jenks BG; Roubos EW; Scheenen WJ Gen Comp Endocrinol; 2008 Mar; 156(1):104-12. PubMed ID: 18206885 [TBL] [Abstract][Full Text] [Related]
16. The secretion of alpha-MSH from xenopus melanotropes involves calcium influx through omega-conotoxin-sensitive voltage-operated calcium channels. Scheenen WJ; de Koning HP; Jenks BG; Vaudry H; Roubos EW J Neuroendocrinol; 1994 Aug; 6(4):457-64. PubMed ID: 7987377 [TBL] [Abstract][Full Text] [Related]
17. Evidence that Ca2+-waves in Xenopus melanotropes depend on calcium-induced calcium release: a fluorescence correlation microscopy and linescanning study. Koopman WJ; Hink MA; Visser AJ; Roubos EW; Jenks BG Cell Calcium; 1999; 26(1-2):59-67. PubMed ID: 10892571 [TBL] [Abstract][Full Text] [Related]
18. Evidence that brain-derived neurotrophic factor acts as an autocrine factor on pituitary melanotrope cells of Xenopus laevis. Kramer BM; Cruijsen PM; Ouwens DT; Coolen MW; Martens GJ; Roubos EW; Jenks BG Endocrinology; 2002 Apr; 143(4):1337-45. PubMed ID: 11897690 [TBL] [Abstract][Full Text] [Related]
19. Activity-dependent dynamics of coexisting brain-derived neurotrophic factor, pro-opiomelanocortin and alpha-melanophore-stimulating hormone in melanotrope cells of Xenopus laevis. Wang LC; Meijer HK; Humbel BM; Jenks BG; Roubos EW J Neuroendocrinol; 2004 Jan; 16(1):19-25. PubMed ID: 14962071 [TBL] [Abstract][Full Text] [Related]
20. Expression of three proopiomelanocortin subtype genes and mass spectrometric identification of POMC-derived peptides in pars distalis and pars intermedia of barfin flounder pituitary. Takahashi A; Amano M; Amiya N; Yamanome T; Yamamori K; Kawauchi H Gen Comp Endocrinol; 2006 Feb; 145(3):280-6. PubMed ID: 16242690 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]