These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

422 related articles for article (PubMed ID: 15891154)

  • 1. Intracranial vascular stenosis and occlusive disease: evaluation with CT angiography, MR angiography, and digital subtraction angiography.
    Bash S; Villablanca JP; Jahan R; Duckwiler G; Tillis M; Kidwell C; Saver J; Sayre J
    AJNR Am J Neuroradiol; 2005 May; 26(5):1012-21. PubMed ID: 15891154
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of high-resolution MRI with CT angiography and digital subtraction angiography for the evaluation of middle cerebral artery atherosclerotic steno-occlusive disease.
    Liu Q; Huang J; Degnan AJ; Chen S; Gillard JH; Teng Z; Lu J
    Int J Cardiovasc Imaging; 2013 Oct; 29(7):1491-8. PubMed ID: 23686460
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accuracy of computed tomographic angiography compared to digital subtraction angiography in the diagnosis of intracranial stenosis and its impact on clinical decision-making.
    Duffis EJ; Jethwa P; Gupta G; Bonello K; Gandhi CD; Prestigiacomo CJ
    J Stroke Cerebrovasc Dis; 2013 Oct; 22(7):1013-7. PubMed ID: 22464276
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How accurate is CT angiography in evaluating intracranial atherosclerotic disease?
    Nguyen-Huynh MN; Wintermark M; English J; Lam J; Vittinghoff E; Smith WS; Johnston SC
    Stroke; 2008 Apr; 39(4):1184-8. PubMed ID: 18292376
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intracranial stenoocclusive disease: double-detector helical CT angiography versus digital subtraction angiography.
    Skutta B; Fürst G; Eilers J; Ferbert A; Kuhn FP
    AJNR Am J Neuroradiol; 1999 May; 20(5):791-9. PubMed ID: 10369348
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Dual-energy CT angiography for evaluation of internal carotid artery stenosis and occlusion].
    Chen Y; Xue HD; Jin ZY; Liu W; Sun H; Wang X; Zhao WM; Wang Y; Mu WB
    Zhongguo Yi Xue Ke Xue Yuan Xue Bao; 2009 Apr; 31(2):215-20. PubMed ID: 19507603
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of PETRA-MRA to assess intracranial arterial stenosis: Comparison with TOF-MRA, CTA, and DSA.
    Niu J; Ran Y; Chen R; Zhang F; Lei X; Wang X; Li T; Zhu J; Zhang Y; Cheng J; Zhang Y; Zhu C
    Front Neurol; 2022; 13():1068132. PubMed ID: 36726752
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of extracranial-intracranial bypass in Moyamoya disease using 3T time-of-flight MR angiography: comparison with CT angiography.
    Chen Q; Qi R; Cheng X; Zhou C; Luo S; Ni L; Huang W
    Vasa; 2014 Jul; 43(4):278-83. PubMed ID: 25007906
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surveillance imaging after intracranial stent implantation: non-invasive imaging compared with digital subtraction angiography.
    Golshani B; Lazzaro MA; Raslau F; Darkhabani Z; Baruah D; Eastwood D; Fitzsimmons BF; Zaidat OO
    J Neurointerv Surg; 2013 Jul; 5(4):361-5. PubMed ID: 22641863
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly accelerated compressed sensing time-of-flight magnetic resonance angiography may be reliable for diagnosing head and neck arterial steno-occlusive disease: a comparative study with digital subtraction angiography.
    Zhang X; Cao YZ; Mu XH; Sun Y; Schmidt M; Forman C; Speier P; Lu SS; Hong XN
    Eur Radiol; 2020 Jun; 30(6):3059-3065. PubMed ID: 32064562
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accuracy of Noncontrast Quiescent-Interval Single-Shot Lower Extremity MR Angiography Versus CT Angiography for Diagnosis of Peripheral Artery Disease: Comparison With Digital Subtraction Angiography.
    Varga-Szemes A; Wichmann JL; Schoepf UJ; Suranyi P; De Cecco CN; Muscogiuri G; Caruso D; Yamada RT; Litwin SE; Tesche C; Duguay TM; Giri S; Vliegenthart R; Todoran TM
    JACC Cardiovasc Imaging; 2017 Oct; 10(10 Pt A):1116-1124. PubMed ID: 28109932
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual-energy CT angiography in the evaluation of intracranial aneurysms: image quality, radiation dose, and comparison with 3D rotational digital subtraction angiography.
    Zhang LJ; Wu SY; Niu JB; Zhang ZL; Wang HZ; Zhao YE; Chai X; Zhou CS; Lu GM
    AJR Am J Roentgenol; 2010 Jan; 194(1):23-30. PubMed ID: 20028901
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of time-of-flight MR angiography and intracranial vessel wall MRI for luminal measurements relative to CT angiography.
    Sarikaya B; Colip C; Hwang WD; Hippe DS; Zhu C; Sun J; Balu N; Yuan C; Mossa-Basha M
    Br J Radiol; 2021 Feb; 94(1118):20200743. PubMed ID: 33180559
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The current role of 1.5T non-contrast 3D time-of-flight magnetic resonance angiography to detect intracranial steno-occlusive disease.
    Sadikin C; Teng MM; Chen TY; Luo CB; Chang FC; Lirng JF; Sun YC
    J Formos Med Assoc; 2007 Sep; 106(9):691-9. PubMed ID: 17908658
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Depiction of branch vessels arising from intracranial aneurysm sacs: Time-of-flight MR angiography versus CT angiography.
    Goto M; Kunimatsu A; Shojima M; Mori H; Abe O; Aoki S; Hayashi N; Gonoi W; Miyati T; Ino K; Yano K; Saito N; Ohtomo K
    Clin Neurol Neurosurg; 2014 Nov; 126():177-84. PubMed ID: 25270230
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diagnostic accuracy of colour Doppler ultrasonography, CT angiography and blood-pool-enhanced MR angiography in assessing carotid stenosis: a comparative study with DSA in 170 patients.
    Anzidei M; Napoli A; Zaccagna F; Di Paolo P; Saba L; Cavallo Marincola B; Zini C; Cartocci G; Di Mare L; Catalano C; Passariello R
    Radiol Med; 2012 Feb; 117(1):54-71. PubMed ID: 21424318
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Follow-up of intracranial aneurysms treated by flow diverter: comparison of three-dimensional time-of-flight MR angiography (3D-TOF-MRA) and contrast-enhanced MR angiography (CE-MRA) sequences with digital subtraction angiography as the gold standard.
    Attali J; Benaissa A; Soize S; Kadziolka K; Portefaix C; Pierot L
    J Neurointerv Surg; 2016 Jan; 8(1):81-6. PubMed ID: 25352582
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly accelerated time-of-flight magnetic resonance angiography using spiral imaging improves conspicuity of intracranial arterial branches while reducing scan time.
    Greve T; Sollmann N; Hock A; Hey S; Gnanaprakasam V; Nijenhuis M; Zimmer C; Kirschke JS
    Eur Radiol; 2020 Feb; 30(2):855-865. PubMed ID: 31664504
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Giant Cerebral Aneurysms: Comparing CTA, MRA, and Digital Subtraction Angiography Assessments.
    Wang X; Benson JC; Jagadeesan B; McKinney A
    J Neuroimaging; 2020 May; 30(3):335-341. PubMed ID: 32324333
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of chronic carotid artery occlusion by non-contrast 3D-MERGE MR vessel wall imaging: comparison with 3D-TOF-MRA, contrast-enhanced MRA, and DSA.
    Zhang J; Ding S; Zhao H; Sun B; Li X; Zhou Y; Wan J; Degnan AJ; Xu J; Zhu C
    Eur Radiol; 2020 Nov; 30(11):5805-5814. PubMed ID: 32529567
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.